[1] |
Benitz WE, Committee on Fetus and Newborn, American Academy of Pediatrics. Patent ductus arteriosus in preterm infants[J]. Pediatrics, 2016, 137(1): e20153730.
|
[2] |
宋艺凡, 李娟. 动脉导管未闭对超低出生体质量儿脏器功能的影响[J]. 临床儿科杂志, 2020, 38(3): 236-240.
|
[3] |
Prescott S, Keim-Malpass J. Patent ductus arteriosus in the preterm infant: diagnostic and treatment options[J]. Adv Neonatal Care, 2017, 17(1): 10-18.
doi: 10.1097/ANC.0000000000000340
|
[4] |
张兰, 沈暐, 陈超, 等. 早产儿HsPDA危险因素及其并发症的临床分析[J]. 中华全科医学, 2019, 17(8): 1299-1301.
|
[5] |
Velazquez DM, Reidy KJ, Sharma M, et al. The effect of hemodynamically significant patent ductus arteriosus on acute kidney injury and systemic hypertension in extremely low gestational age newborns[J]. J Matern Fetal Neonatal Med, 2019, 32(19): 3209-3214.
doi: 10.1080/14767058.2018.1460349
pmid: 29642731
|
[6] |
赵金章, 李明霞. 早产儿动脉导管未闭发病机制研究进展[J]. 中华实用儿科临床杂志, 2014, 29(1): 60-63.
|
[7] |
Kluckow M. The pathophysiology of low systemic blood flow in the preterm infant[J]. Front Pediatr, 2018, 6: 29.
doi: 10.3389/fped.2018.00029
pmid: 29503814
|
[8] |
Lee JA, Sohn JA, Oh S, et al. Perinatal risk factors of symptomatic preterm patent ductus arteriosus and secondary ligation[J]. Pediatr Neonatol, 2020, 61(4): 439-446.
doi: S1875-9572(20)30056-5
pmid: 32362475
|
[9] |
钱爱民, 朱雯, 杨洋, 等. 超早产儿有血流动力学意义的动脉导管未闭危险因素分析[J]. 中华新生儿科杂志, 2021, 36(6): 18-22.
|
[10] |
Green CA, Westreich D, Laughon MM, et al. Association of chorioamnionitis and patent ductus arteriosus in a national U.S. cohort[J]. J Perinatol, 2021, 41(1): 119-125.
doi: 10.1038/s41372-020-00866-x
pmid: 33093626
|
[11] |
Ryu YH, Oh S, Sohn J, et al. The associations between antenatal corticosteroids and in-hospital outcomes of preterm singleton appropriate for gestational age neonates according to the presence of maternal histologic chorioamnionitis[J]. Neonatology, 2019, 116(4): 369-375.
doi: 10.1159/000502650
pmid: 31593959
|
[12] |
Yamaguchi H, Wada K, Nagasawa M, et al. Very low birth weight monochorionic diamniotic twins as a risk factor for symptomatic patent ductus arteriosus[J]. Neonatology, 2016, 109(3): 228-234.
doi: 10.1159/000442968
pmid: 26859415
|
[13] |
Clyman RI, Hills NK, Dagle JM, et al. Interactions between PDA-associated polymorphisms and genetic ancestry alter ductus arteriosus gene expression[J]. Pediatr Res, 2022, 91(4): 903-911.
doi: 10.1038/s41390-021-01506-6
|
[14] |
Echtler K, Stark K, Lorenz M, et al. Platelets contribute to postnatal occlusion of the ductus arteriosus[J]. Nat Med, 2010, 16(1): 75-82.
doi: 10.1038/nm.2060
pmid: 19966813
|
[15] |
González-Luis G, Ghiradello S, Bas-Suárez P, et al. Platelet counts and patent ductus arteriosus in preterm infants: an updated systematic review and meta-analysis[J]. Front Pediatr, 2020, 8: 613766.
|
[16] |
Ding R, Zhang Q, Duan Y, et al. The relationship between platelet indices and patent ductus arteriosus in preterm infants: a systematic review and meta-analysis[J]. Eur J Pediatr, 2021, 180(3): 699-708.
doi: 10.1007/s00431-020-03802-5
|
[17] |
Kumar J, Dutta S, Sundaram V, et al. Platelet transfusion for PDA closure in preterm infants: a randomized controlled trial[J]. Pediatrics, 2019, 143(5): e20182565.
|
[18] |
Demirel G, Yılmaz A, Vatansever B, et al. Is high platelet distribution width in the first hours of life can predict hemodynamically significant patent ductus arteriosus in preterm newborns?[J]. J Matern Fetal Neonatal Med, 2020, 33(12): 2049-2053.
doi: 10.1080/14767058.2018.1536743
pmid: 30318943
|
[19] |
Guler Kazanci E, Buyuktiryaki M, Unsal H, et al. Useful platelet indices for the diagnosis and follow-up of patent ductus arteriosus[J]. Am J Perinatol, 2019, 36(14): 1521-1527.
doi: 10.1055/s-0039-1688821
|
[20] |
张成强, 陆澄秋, 钱蓓倩, 等. 早产儿生后7天内血小板各项参数对动脉导管未闭的影响[J]. 中国妇幼健康研究, 2020, 31(9): 1229-1234.
|
[21] |
任漪, 高翔羽, 王惠颖, 等. 血小板聚集功能预测早产儿动脉导管持续开放的价值[J]. 中华儿科杂志, 2021, 59(2): 113-118.
|
[22] |
Hou HT, Xi Z, Wang J, et al. Altered plasma proteins released from platelets and endothelial cells are associated with human patent ductus arteriosus[J]. J Cell Physiol, 2019, 234(5): 6842-6853.
doi: 10.1002/jcp.v234.5
|
[23] |
Goetze JP, Bruneau BG, Ramos HR, et al. Cardiac natriuretic peptides[J]. Nat Rev Cardiol, 2020, 17(11): 698-717.
doi: 10.1038/s41569-020-0381-0
|
[24] |
Weisz DE, McNamara PJ, El-Khuffash A. Cardiac biomarkers and haemodynamically significant patent ductus arteriosus in preterm infants[J]. Early Hum Dev, 2017, 105: 41-47.
doi: S0378-3782(16)30571-0
pmid: 27998626
|
[25] |
Permyakova AV, Porodikov A, Kuchumov AG, et al. Discriminant analysis of main prognostic factors associated with hemodynamically significant PDA: Apgar score, Silverman-Anderson score, and NT-Pro-BNP level[J]. J Clin Med, 2021, 10(16): 3729.
doi: 10.3390/jcm10163729
|
[26] |
Sellmer A, Hjortdal VE, Bjerre JV, et al. Cardiovascular biomarkers in the evaluation of patent ductus arteriosus in very preterm neonates: a cohort study[J]. Early Hum Dev, 2020, 149: 105142.
|
[27] |
刘颖, 黄珍砾, 宫琳, 等. 氮端B型利钠肽原在极低出生体质量儿血流动力学改变显著的动脉导管未闭诊治中的预测价值[J]. 中国妇幼保健, 2020, 35(24): 4748-4752.
|
[28] |
Liu Y, Huang ZL, Gong L, et al. N-terminal pro-brain natriuretic peptide used for screening hemodynamically significant patent ductus arteriosus in very low birth weight infants: how and when?[J]. Clin Hemorheol Microcirc, 2020, 75(3): 335-347.
doi: 10.3233/CH-190803
|
[29] |
Wu YH, Chang SW, Chen CC, et al. Differential determinants of patent ductus arteriosus closure for prematurity of varying birth body weight: a retrospective cohort study[J]. Pediatr Neonatol, 2020, 61(5): 513-521.
doi: 10.1016/j.pedneo.2020.05.011
|
[30] |
陈许, 姜杰, 张婧, 等. 超声心排出量监测仪对早产儿有血流动力学影响的动脉导管未闭的预测价值[J]. 中华实用儿科临床杂志, 2021, 36(23): 1801-1805.
|
[31] |
Boldt R, Mäkelä PM, Immeli L, et al. Blood pressure changes during the first 24 hours of life and the association with the persistence of a patent ductus arteriosus and occurrence of intraventricular haemorrhage[J]. PLoS One, 2021, 16(11): e0260377.
|
[32] |
Patra A, Thakkar PS, Makhoul M, et al. Objective assessment of physiologic alterations associated with hemodynamically significant patent ductus arteriosus in extremely premature neonates[J]. Front Pediatr, 2021, 9: 648584.
|
[33] |
武玮, 王华. 脉搏灌注指数监测在新生儿中的应用研究进展[J]. 北京医学, 2021, 43(8): 788-791.
|
[34] |
Gomez-Pomar E, Makhoul M, Westgate PM, et al. Relationship between perfusion index and patent ductus arteriosus in preterm infants[J]. Pediatr Res, 2017, 81(5): 775-779.
doi: 10.1038/pr.2017.10
pmid: 28099422
|
[35] |
Balla KC, John V, Rao Pn S, et al. Perfusion index-bedside diagnosis of hemodynamically significant patent ductus arteriosus[J]. J Trop Pediatr, 2016, 62(4): 263-268.
doi: 10.1093/tropej/fmv086
|
[36] |
Osman A A, Albalawi M, Dakshinamurti S, et al. The perfusion index histograms predict patent ductus arteriosus requiring treatment in preterm infants[J]. Eur J Pediatr, 2021, 180(6): 1747-1754.
doi: 10.1007/s00431-021-03937-z
pmid: 33486603
|
[37] |
刘太祥, 马晓路, 陈军津, 等. 生后早期床旁心脏超声预测极低出生体重儿动脉导管持续开放的研究[J]. 中国当代儿科杂志, 2022, 24(1): 26-32.
|
[38] |
Yu LF, Xu CK, Zhao M, et al. Bedside cardiopulmonary ultrasonography evaluates lung water content in very low-weight preterm neonates with patent ductus arteriosus[J]. World J Clin Cases, 2021, 9(8): 1827-1834.
doi: 10.12998/wjcc.v9.i8.1827
|
[39] |
Masutani S, Isayama T, Kobayashi T, et al. Ductus diameter and left pulmonary artery end-diastolic velocity at 3 days of age predict the future need for surgical closure of patent ductus arteriosus in preterm infants: a post-hoc analysis of a prospective multicenter study[J]. J Cardiol, 2021, 78(6): 487-492.
doi: 10.1016/j.jjcc.2021.08.007
pmid: 34481720
|
[40] |
Liu YM, Zheng ML, Sun X, et al. The clinical value of ultrasonic cardiac output monitor in very-low birth-weight and extremely-low-birth-weight infants undergoing PDA ligation[J]. Early Hum Dev, 2022, 165: 105522.
|
[41] |
Choi EK, Park KH, Choi BM. Size of patent ductus arteriosus and echocardiographic markers of shunt volume in preterm infants based on postnatal age[J]. Front Pediatr, 2021, 9: 635616.
|
[42] |
Martins FF, Bassani DG, Rios DI, et al. Relationship of patent ductus arteriosus echocardiographic markers with descending aorta diastolic flow[J]. J Ultrasound Med, 2021, 40(8): 1505-1514.
doi: 10.1002/jum.15528
pmid: 33044780
|
[43] |
Babla K, Duffy D, Dumitru R, et al. Repeatability of PDA diameter measurements on echocardiography[J]. Eur J Pediatr, 2022, 181(1): 403-406.
doi: 10.1007/s00431-021-04178-w
|
[44] |
接双双, 戴立英. 近红外光谱技术在危重新生儿的应用及研究进展[J]. 中华全科医学, 2021, 19(12): 2106-2109.
|
[45] |
黄循斌, 钟晓, 刘婷, 等. 近红外光谱技术对有血流动力学意义的动脉导管未闭早产儿肠道组织氧饱和度监测价值的前瞻性研究[J]. 中国当代儿科杂志, 2021, 23(8): 821-827.
|
[46] |
Navikiene J, Virsilas E, Vankeviciene R, et al. Brain and renal oxygenation measured by NIRS related to patent ductus arteriosus in preterm infants: a prospective observational study[J]. BMC Pediatr, 2021, 21(1): 559.
doi: 10.1186/s12887-021-03036-w
pmid: 34886825
|
[47] |
Na JY, Kim D, Kwon AM, et al. Artificial intelligence model comparison for risk factor analysis of patent ductus arteriosus in nationwide very low birth weight infants cohort[J]. Sci Rep, 2021, 11(1): 22353.
doi: 10.1038/s41598-021-01640-5
pmid: 34785709
|