[1] |
Haendel M, Vasilevsky N, Unni D, et al. How many rare diseases are there?[J]. Nat Rev Drug Discov, 2020, 19(2): 77-78.
doi: 10.1038/d41573-019-00180-y
pmid: 32020066
|
[2] |
Booth C, Aiuti A. Realizing the potential of gene therapies for rare and ultra-rare inherited diseases[J]. Hum Gene Ther, 2023, 34(17-18): 776-781.
doi: 10.1089/hum.2023.127
|
[3] |
Butcher CJ, Hussain W. Digital healthcare: the future[J]. Future Healthc J, 2022, 9(2): 113-117.
doi: 10.7861/fhj.2022-0046
pmid: 35928188
|
[4] |
Frésard L, Smail C, Ferraro NM, et al. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts[J]. Nat Med, 2019, 25(6): 911-919.
doi: 10.1038/s41591-019-0457-8
pmid: 31160820
|
[5] |
Yépez VA, Gusic M, Kopajtich R, et al. Clinical implementation of RNA sequencing for Mendelian disease diagnostics[J]. Genome Med, 2022, 14(1): 38.
doi: 10.1186/s13073-022-01019-9
pmid: 35379322
|
[6] |
Dekker J, Schot R, Bongaerts M, et al. Web-accessible application for identifying pathogenic transcripts with RNA-seq: increased sensitivity in diagnosis of neurodevelopmental disorders[J]. Am J Hum Genet, 2023, 110: 251-272.
doi: 10.1016/j.ajhg.2022.12.015
pmid: 36669495
|
[7] |
Forny P, Bonilla X, Lamparter D, et al. Integrated multi-omics reveals anaplerotic rewiring in methylmalonyl-CoA mutase deficiency[J]. Nat Metab, 2023, 5(1): 80-95.
doi: 10.1038/s42255-022-00720-8
pmid: 36717752
|
[8] |
Smirnov D, Schlieben LD, Peymani F, et al. Guidelines for clinical interpretation of variant pathogenicity using RNA phenotypes[J]. Hum Mutat, 2022, 43(8): 1056-1070.
doi: 10.1002/humu.v43.8
|
[9] |
Murdock DR, Dai H, Burrage LC, et al. Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing[J]. J Clin Invest, 2021, 131(1): e141500.
doi: 10.1172/JCI141500
|
[10] |
Bonder MJ, Smail C, Gloudemans MJ, et al. Identification of rare and common regulatory variants in pluripotent cells using population-scale transcriptomics[J]. Nat Genet, 2021, 53(3): 313-321.
doi: 10.1038/s41588-021-00800-7
pmid: 33664507
|
[11] |
Jiang L, Wang M, Lin S, et al. A quantitative proteome map of the human body[J]. Cell, 2020, 183(1): 269-283.
doi: 10.1016/j.cell.2020.08.036
pmid: 32916130
|
[12] |
Li T, Ferraro N, Strober BJ, et al. The functional impact of rare variation across the regulatory cascade[J]. Cell Genom, 2023, 3(10): 100401.
|
[13] |
Almeida LS, Pereira C, Aanicai R, et al. An integrated multiomic approach as an excellent tool for the diagnosis of metabolic diseases: our first 3720 patients[J]. Eur J Hum Genet, 2022, 30(9): 1029-1035.
doi: 10.1038/s41431-022-01119-5
|
[14] |
Ching-López A, Martinez-Gonzalez LJ, Arrabal L, et al. Combined genome, transcriptome and metabolome analysis in the diagnosis of childhood cerebellar ataxia[J]. Int J Mol Sci, 2021, 22(6): 2990.
doi: 10.3390/ijms22062990
|
[15] |
Kyle JE, Stratton KG, Zink EM, et al. A resource of lipidomics and metabolomics data from individuals with undiagnosed diseases[J]. Sci Data, 2021, 8(1): 114.
doi: 10.1038/s41597-021-00894-y
pmid: 33883556
|
[16] |
Martinez-Delgado B, Barrero MJ. Epigenomic approaches for the diagnosis of rare diseases[J]. Epigenomes, 2022, 6(3): 21.
doi: 10.3390/epigenomes6030021
|
[17] |
Levy MA, McConkey H, Kerkhof J, et al. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders[J]. HGG Adv, 2022, 3(1): 100075.
|
[18] |
Turinsky AL, Choufani S, Lu K, et al. EpigenCentral: portal for DNA methylation data analysis and classification in rare diseases[J]. Hum Mutat, 2020, 41(10): 1722-1733.
doi: 10.1002/humu.v41.10
|
[19] |
van der Laan L, Rooney K, Trooster TM, et al. DNA methylation episignatures: insight into copy number variation[J]. Epigenomics, 2022, 14(21): 1373-1388.
doi: 10.2217/epi-2022-0287
pmid: 36537268
|
[20] |
Sadikovic B, Levy MA, Kerkhof J, et al. Clinical epigenomics: genome-wide DNA methylation analysis for the diagnosis of Mendelian disorders[J]. Genet Med, 2021, 23(6): 1065-1074.
doi: 10.1038/s41436-020-01096-4
pmid: 33547396
|
[21] |
Lacaze P, Millis N, Fookes M, et al. Rare disease registries: a call to action[J]. J Intern Med, 2017, 47(9): 1075-1079.
doi: 10.1111/imj.2017.47.issue-9
|
[22] |
Guo J, Liu P, Chen L, et al. National rare diseases registry system (NRDRS): China’s first nation-wide rare diseases demographic analyses[J]. Orphanet J Rare Dis, 2021, 16(1): 515.
doi: 10.1186/s13023-021-02130-7
|
[23] |
Kölker S, Gleich F, Mütze U, et al. Rare disease registries are key to evidence-based personalized medicine: highlighting the European experience[J]. Front Endocrinol (Lausanne), 2022, 13: 832063.
doi: 10.3389/fendo.2022.832063
|
[24] |
EURORDIS-NORD-CORD Joint Declaration of 10 Key Principles for Rare Disease Patient Registries[EB/OL]. https://download2.eurordis.org/documents/pdf/EURORDIS_NORD_CORD_JointDec_Registries_FINAL.pdf
|
[25] |
Derayeh S, Kazemi A, Rabiei R, et al. National information system for rare diseases with an approach to data architecture: a systematic review[J]. Intractable Rare Dis Res, 2018, 7(3): 156-163.
doi: 10.5582/irdr.2018.01065
|
[26] |
Ruseckaite R, Mudunna C, Caruso M, et al. Current state of rare disease registries and databases in Australia: a scoping review[J]. Orphanet J Rare Dis, 2023, 18(1): 216.
doi: 10.1186/s13023-023-02823-1
pmid: 37501152
|
[27] |
Taruscio D, Vittozzi L, Choquet R, et al. National registries of rare diseases in Europe: an overview of the current situation and experiences[J]. Public Health Genomics, 2015, 18(1): 20-25.
doi: 10.1159/000365897
pmid: 25228300
|
[28] |
郭健, 吕浩涵, 李杰, 等. 中国国家罕见病注册系统架构和数据质量控制及管理流程[J]. 中国数字医学, 2021, 16(1): 17-22.
|
[29] |
Zhang L, Jin Y, Li J, et al. Epidemiological research on rare diseases using large-scale online search queries and reported case data[J]. Orphanet J Rare Dis, 2023, 18(1): 236.
doi: 10.1186/s13023-023-02839-7
pmid: 37559136
|
[30] |
Ronicke S, Hirsch MC, Türk E, et al. Can a decision support system accelerate rare disease diagnosis? Evaluating the potential impact of Ada DX in a retrospective study[J]. Orphanet J Rare Dis, 2019, 14: 69.
doi: 10.1186/s13023-019-1040-6
pmid: 30898118
|
[31] |
Gurovich Y, Hanani Y, Bar O, et al. Identifying facial phenotypes of genetic disorders using deep learning[J]. Nat Med, 2019, 25: 60-64.
doi: 10.1038/s41591-018-0279-0
pmid: 30617323
|
[32] |
Thomas LB, Mastorides SM, Viswanadhan NA, et al. Artificial intelligence: review of current and future applications in medicine[J]. Fed Pract, 2021, 38: 527-538.
doi: 10.12788/fp.0174
pmid: 35136337
|
[33] |
Xu J, Yang P, Xue S, et al. Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives[J]. Hum Genet, 2019, 138: 109-124.
doi: 10.1007/s00439-019-01970-5
pmid: 30671672
|
[34] |
Visibelli A, Roncaglia B, Spiga O, et al. The Impact of artificial intelligence in the odyssey of rare diseases[J]. Biomedicines, 2023, 11(3): 887.
doi: 10.3390/biomedicines11030887
|
[35] |
Foksinska A, Crowder CM, Crouse AB, et al. The precision medicine process for treating rare disease using the artificial intelligence tool mediKanren[J]. Front Artif Intell, 2022, 5: 910216.
doi: 10.3389/frai.2022.910216
|
[36] |
Visibelli A, Roncaglia B, Spiga O, et al. The impact of artificial intelligence in the odyssey of rare diseases[J]. Biomedicine, 2023, 11(3): 887.
|
[37] |
Farrar MA, Calotes-Castillo L, De Silva R, et al. Gene therapy-based strategies for spinal muscular atrophy-an Asia-Pacific perspective[J]. Mol Cell Pediatr, 2023, 10(1): 17.
doi: 10.1186/s40348-023-00171-5
pmid: 37964159
|
[38] |
Kioutchoukova IP, Foster DT, Thakkar RN, et al. Neurologic orphan diseases: Emerging innovations and role for genetic treatments[J]. World J Exp Med, 2023, 13(4): 59-74.
doi: 10.5493/wjem.v13.i4.59
pmid: 37767543
|
[39] |
Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of luxturna (and zolgensma and glybera): where are we, and how did we get here?[J]. Annu Rev Virol, 2019, 6(1): 601-621.
doi: 10.1146/annurev-virology-092818-015530
pmid: 31283441
|
[40] |
Bueren JA, Auricchio A. Advances and challenges in the development of gene therapy medicinal products for rare diseases[J]. Hum Gene Ther, 2023, 34(17-18): 763-775.
doi: 10.1089/hum.2023.152
pmid: 37694572
|
[41] |
Ozelo MC, Mahlangu J, Pasi KJ, et al. Valoctocogene roxaparvovec gene therapy for hemophilia A[J]. N Engl J Med, 2022, 386(11): 1013-1025.
doi: 10.1056/NEJMoa2113708
|
[42] |
Pipe SW, Leebeek FWG, Recht M, et al. Gene therapy with etranacogene dezaparvovec for hemophilia B[J]. N Engl J Med, 2023, 388(8): 706-718.
doi: 10.1056/NEJMoa2211644
|
[43] |
Mendell JR, Sahenk Z, Lehman K, et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with duchenne muscular dystrophy: a nonrandomized controlled trial[J]. JAMA Neurol, 2020, 77(9): 1122-1131.
doi: 10.1001/jamaneurol.2020.1484
|
[44] |
Dhillon S. Beremagene geperpavec: first approval[J]. Drugs, 2023, 83(12): 1131-1135.
doi: 10.1007/s40265-023-01921-5
pmid: 37432558
|
[45] |
Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10[J]. Nat Med, 2019, 25(2): 229-233.
doi: 10.1038/s41591-018-0327-9
pmid: 30664785
|
[46] |
Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis[J]. N Engl J Med, 2021, 385(6): 493-502.
doi: 10.1056/NEJMoa2107454
|