临床儿科杂志 ›› 2022, Vol. 40 ›› Issue (2): 87-94.doi: 10.12372/jcp.2022.21e1618
杨小燕1,2, 卞秋涵2, 庹媛媛1,2, 王顶环2, 黄璟1,2
收稿日期:
2021-11-22
出版日期:
2022-02-15
发布日期:
2022-02-11
作者简介:
杨小燕(1986-),女,青年编委,贵州医科大学附属医院儿科血液专科副主任医师,医学博士,博士研究生导师。贵州省高层次创新型人才“千层次”人才,贵阳市科技局专家库成员。兼任中华医学会儿科学分会第十八届委员会青年委员会委员,中华医学会儿科学分会第十八届委员会血液青年学组委员,中华医学会儿科临床药理青年委员会委员,中国抗癌协会小儿肿瘤专委会青年委员,贵州省医学会儿科学分会委员,贵州省医学会儿科学分会血液学组秘书,《临床儿科杂志》青年编委。曾于美国Duke University临床医学研究中心访问学习。主持国家自然科学基金项目1项,贵州省科技厅课题2项,参与多项国家自然科学基金、省市级课题的研究。发表学术论文10余篇。
基金资助:
YANG Xiaoyan1,2, BIAN Qiuhan2, TUO Yuanyuan1,2, WANG Dinghuan2, HUANG Jing1,2
Received:
2021-11-22
Online:
2022-02-15
Published:
2022-02-11
摘要:
遗传性血小板功能障碍(IPFDs)是一类罕见疾病。临床表现具有异质性,以自发性皮肤黏膜出血、月经过多、外伤后难以止血多见,伴或不伴血小板减少为主要特征。由于临床诊断困难,发病率被低估,其治疗和管理也极具挑战性。文章对IPFDs的分类、临床表现、诊治及管理进行归纳,以提高对本病的了解,为临床一线医师提供参考。
杨小燕, 卞秋涵, 庹媛媛, 王顶环, 黄璟. 遗传性血小板功能障碍性疾病的诊治与管理[J]. 临床儿科杂志, 2022, 40(2): 87-94.
YANG Xiaoyan, BIAN Qiuhan, TUO Yuanyuan, WANG Dinghuan, HUANG Jing. Inherited platelet function disorders: diagnosis, treatment and management[J]. Journal of Clinical Pediatrics, 2022, 40(2): 87-94.
表1
常见的遗传性血小板功能障碍性疾病变异及临床表现"
遗传疾病 | 基因位点 | 遗传方式 | 主要表现 |
---|---|---|---|
血小板大小正常的遗传性血小板减少症 | |||
先天性无巨核细胞性血小板减少症 | MPL | AR | 非常严重的血小板、巨核细胞减少;儿童期易进展为再生障碍性贫血;有严重出血倾向 |
THPO相关性血小板减少症 | THPO | AD/AR | 单等位基因变异表现为轻度血小板减少;双基因变异有 严重出血倾向 |
血小板减少伴尺桡骨发育 不良 | HOXA11 | AD | 严重的血小板减少、巨核细胞减少/缺失;儿童易进展为 再生障碍性贫血;桡骨和尺骨融合伴/不伴其他骨骼改变;感音性听力丧失;严重出血倾向 |
易患急性髓细胞白血病的 家族性血小板疾病 | RUNX1 | AD | 轻中度血小板减少;血小板颗粒缺乏;年轻时患急性髓母细胞白血病或骨髓增生异常综合征风险高(>40%); 患淋巴细胞白血病和实体瘤的风险高;无重度出血倾向 |
ANKRD26相关血小板 减少症 | ANKRD26 | AD | 轻中度血小板减少;有些患者血红蛋白和/或白细胞增多;大约10%的患者患有髓系肿瘤;无出血倾向 |
ETV6相关血小板减少症 | ETV6 | AD | 平均红细胞体积增大;血小板可能出现α颗粒功能异常;出现大量CD34+细胞;30%易患获得性淋巴、髓系 白细胞和骨髓增生综合征;无出血倾向 |
KZF5相关血小板减少症 | KZF5 | AD | 轻度至中度血小板减少;血小板的α和δ颗粒较少;无 出血倾向 |
Stormorken综合征 | STIM1ORAI1 | AD | 中度血小板减少;异常血栓形成;无精症、轻度贫血、 先天性瞳孔缩小;鱼鳞病、身材矮小、偏头痛和轻度认知障碍;轻度出血倾向 |
York血小板综合征 | STIM1 | AD | 比Stormorken综合征更罕见;中度至重度血小板减少; 血小板中α和δ颗粒较少;轻度出血倾向 |
遗传性血小板减少症伴大血小板 | |||
Bernard-Soulier综合征 | GP1BA、GP1BB、GP9 | AR | 中度至重度血小板减少和巨血小板;严重出血倾向 |
血小板型血管性血友病 | GP1BA | AD | 血小板减少伴低分子量血管性血友病因子多聚体 |
ITGA2B/ITGB3相关性 血小板减少症 | ITGA2B、ITGB3 | AD | 轻度至中度血小板减少;中度出血倾向 |
迪格奥尔格综合征 | TBX1/GP1BB | AD | 中度血小板减少;心脏异常、甲状旁腺和胸腺功能不全、 认知障碍;轻度至重度出血倾向 |
MYH9相关血小板减少症 | MYH9 | AD | 听力受损、肾病、肝病、白内障;无出血倾向 |
DIPAH1相关血小板减少症 | DIPAH1 | AD | 轻度血小板减少(偶尔血小板计数正常);低至中度感染 风险;早期感音性神经性耳聋;无出血倾向 |
SLFN14相关血小板减少症 | SLFN14 | AD | 轻度至中度血小板减少;δ颗粒分泌缺陷;未成熟血小板数量增加;中重度出血倾向 |
SRC相关血小板减少症 | SRC | AD | 轻度至重度血小板减少;血小板颗粒缺陷、骨髓纤维化和早期面部畸形;不成熟巨核细胞数量增多;轻度至重度出血倾向 |
TPM4相关血小板减少症 | TPM4 | AD | 轻度血小板减少;无出血倾向 |
Takenouchi-Kosaki综合征伴巨血小板减少 | CDC42 | AD | 中度血小板减少;智力、成长、精神和运动发育缺陷;大脑/面部/肌肉/骨骼异常;免疫缺陷、湿疹、听力/视力障碍、淋巴水肿和心脏或泌尿生殖系统畸形;无出血倾向 |
GNE相关血小板减少症 | GNE | AR | 严重血小板减少;一些患者患有孤立性血小板减少症; 轻度至重度出血倾向 |
ACTB相关血小板减少症 | ACTB | AD | 轻度至中度血小板减少;白细胞增多伴嗜酸性粒细胞增多、白细胞减少;小头畸形、轻微面部异常、发育迟缓、轻度智力残疾;无出血倾向 |
遗传性血小板减少症伴小血小板 | |||
Wiskott-Aldrich综合征 | WAS | XL | 严重血小板减少;免疫缺陷、湿疹、淋巴增生和自身免疫性疾病;严重出血倾向 |
FYB相关血小板减少症 | FYB | AR | 中度至重度血小板减少;αIIbβ3活化受损;轻度至中度出血倾向 |
ARCP1B相关血小板减少症 | ARCP1B | AR | 中度至重度血小板减少;某些情况下血小板计数正常; 嗜酸性粒细胞增多;免疫介导的炎症性疾病,湿疹,肝脾肿大;中度出血倾向 |
PTPRJ相关血小板减少症 | PTPRJ | AR | 中度至重度血小板减少;SRC型激酶激活缺陷;巨核细胞成熟缺陷;轻度至中度出血倾向 |
遗传性血小板颗粒缺陷 | |||
灰色血小板综合征 | NBEAL2/GFI1B | AR/AD | 轻至中度出血倾向;伴有大血小板、α颗粒减少或缺失的中度血小板减少症 |
Quebec综合征 | PLAU | AD | 中度血小板减少;血小板形态正常;检测α-颗粒蛋白缺陷;对抗纤溶药物有反应,但对血小板输注无反应 |
Hermansky-Pudlak综合征 | HPS | AR | 其特征为眼、皮肤白化病和血小板δ-颗粒缺陷,并伴有 血小板功能障碍,导致轻度至中度出血症状。诊断是通过临床发现皮肤、眼睛(有时是头发)色素减退,斜视或眼峡,以及血小板上致密小体缺失而确定 |
Chediak-Higashi综合征 | CHS | AR | 眼、皮肤白化病;有免疫缺陷易反复感染以及δ-颗粒缺陷;85%的病例发展为噬血细胞性淋巴组织细胞增多症; 轻度至中度出血倾向。明确诊断是基于CHS的分子遗传学检测 |
Griscelli综合征 | RAB27/MYO5A、 MLPH | AR | 正常血小板计数和形态;δ-颗粒缺陷;白化病,神经系统缺陷,NK细胞和T淋巴细胞的细胞毒性功能降低 |
血小板受体功能障碍 | |||
血小板无力症 | αIIbβ3 | AR | 正常血小板计数和形态;所有激动剂(ADP、TxA2、胶原、凝血酶)均缺乏或严重降低;流式细胞术显示αIIbβ3表达缺失或减少:Ⅰ型残余αIIbβ3<5%;II型残余αIIbβ3 5-20%;III型残余αIIbβ3 >20%;严重出血倾向 |
ADP受体缺乏 | P2Y12 | AD/AR | 正常血小板计数和形态;轻度至中度出血倾向 |
TXA2受体缺乏 | TxA2-R (TPα) | AD/AR | 正常血小板计数和形态;花生四烯酸或TxA2类似物缺乏或严重降低LTA;可伴有骨质疏松、复发性胃溃疡,无 出血症状或中至重度出血 |
GPVI胶原受体缺陷 | GPVI或GPIa/IIa | AR | 正常血小板计数和形态;GPⅥ缺乏症患者全血中胶原粘连减少,LTA胶原反应正常,不伴有出血或有轻至中度皮肤黏膜出血 |
表2
遗传性血小板功能障碍性疾病的治疗"
治疗措施 | 临床疗效 |
---|---|
局部止血 | 可以改善鼻出血、外科手术出血、牙龈出血等 |
去氨加压素 | 可增加血小板的黏附和聚集,增强血小板促凝活性,缩短出血时间。对于颗粒分泌障碍、信号转导缺陷、MYH9相关血小板减少症等手术或分娩期间出血治疗有效。对于血小板无力症治疗效果欠佳 |
抗纤溶剂 | 可改善鼻出血、牙龈出血、月经过多,可预防小手术后出血 |
重组活化因子Ⅶ | 可增加凝血酶的生成、增强血小板的聚集以及血小板与细胞外基质的黏附功能。FDA批准用于治疗出血和血小板无力症的围手术期管理;Bernard-Soulier综合征患者手术期间出血的处理 |
雌激素 | 改善月经过多 |
输注血小板 | 中小型手术中出血的处理 |
造血干细胞移植 | 成功用于血小板无力症及Bernard-Soulier综合征患者 |
基因治疗 | 7例Wiskott-Aldrich综合征患者血液和免疫状况得到改善 |
[1] |
Bolton-Maggs PH, Chalmers EA, Collins PW, et al. A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO[J]. Br J Haematol, 2006, 135(5):603-633.
doi: 10.1111/bjh.2006.135.issue-5 |
[2] | Mohan G, Malayala SV, Mehta P, et al. A comprehensive review of congenital platelet disorders, thrombocytopenias and thrombocytopathies[J]. Cureus, 2020, 312(10):e11275. |
[3] |
Dorgalaleh A, Tabibian S, Shamsizadeh M. Inherited platelet function disorders (IPFDs)[J]. Clin Lab, 2017, 63(1):1-13.
doi: 10.7754/Clin.Lab.2016.160607 pmid: 28164499 |
[4] |
Nava T, Rivard GE, Bonnefoy A. Challenges on the diagnostic approach of inherited platelet function disorders: Is a paradigm change necessary?[J]. Platelets, 2018, 29(2):148-155.
doi: 10.1080/09537104.2017.1356918 |
[5] |
Gresele P, Bury L, Falcinelli E. Inherited platelet function disorders: algorithms for phenotypic and genetic investigation[J]. Semin Thromb Hemost, 2016, 42(3):292-305.
doi: 10.1055/s-0035-1570078 pmid: 26962877 |
[6] |
Gresele P, Falcinelli E, Bury L. Inherited platelet function disorders diagnostic approach and management[J]. Hamostaseologie, 2016, 36(4):265-278.
pmid: 27484722 |
[7] |
Palma-Barqueros V, Revilla N, Sánchez A, et al. Inherited platelet disorders: an updated overview[J]. Int J Mol Sci, 2021, 22(9):4521.
doi: 10.3390/ijms22094521 |
[8] |
Ballmaier M, Germeshausen M. Congenital amega-karyocytic thrombocytopenia: clinical presentation, diagnosis, and treatment[J]. Semin Thromb Hemost, 2011, 37(6):673-681.
doi: 10.1055/s-0031-1291377 pmid: 22102270 |
[9] |
Germeshausen M, Ballmaier M. CAMT-MPL: congenital amegakaryocytic thrombocytopenia caused by MPL mutations - heterogeneity of a monogenic disorder - a comprehensive analysis of 56 patient[J]. Haematologica, 2021, 106(9):2439-2448.
doi: 10.3324/haematol.2020.257972 pmid: 32703794 |
[10] |
Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians[J]. Blood Rev, 2021, 48:100784.
doi: 10.1016/j.blre.2020.100784 |
[11] |
Thompson AA, Woodruff K, Feig SA. Congenital thrombocytopenia and radio-ulnar synostosis: a new familial syndrome[J]. Br J Haematol, 2001, 113(4):866-870.
doi: 10.1046/j.1365-2141.2001.02834.x |
[12] |
Nurden AT, Nurden P. Inherited thrombocytopenias: history, advances and perspectives[J]. Haematologica, 2020, 105(8):2004-2019.
doi: 10.3324/haematol.2019.233197 pmid: 32527953 |
[13] |
Lacruz RS, Feske S. Diseases caused by mutations in ORAI1 and STIM1[J]. Ann N Y Acad Sci, 2015, 1356(1):45-79.
doi: 10.1111/nyas.12938 |
[14] |
Monteiro M, Almeida L, Morais M. Bernard Soulier syndrome: a rare, frequently misdiagnosed and poorly managed bleeding disorder[J]. BMJ Case Rep, 2021, 14(8):e243518.
doi: 10.1136/bcr-2021-243518 |
[15] |
Andrews RK, Berndt MC. Bernard-Soulier syndrome: an update[J]. Semin Thromb Hemost, 2013, 39(6):656-662.
doi: 10.1055/s-0033-1353390 pmid: 23929303 |
[16] |
Favier M, Bordet JC, Favier R, et al. Mutations of the integrin alphaIIb/beta3 intracytoplasmic salt bridge cause macrothrombocytopenia and enlarged platelet alpha-granules[J]. Am J Hematol, 2018, 93(2):195-204.
doi: 10.1002/ajh.24958 pmid: 29090484 |
[17] |
Morais S, Oliveira J, Lau C, et al. αIIbβ3 variants in ten families with autosomal dominant macrothrombocytopenia: Expanding the mutational and clinical spectrum[J]. PLoS One, 2020, 15(12):e0235136.
doi: 10.1371/journal.pone.0235136 |
[18] | Luo XJ, Cao K, Liu J, et al. Gene analysis and clinical features of MYH9-related disease[J]. Zhonghua Er Ke Za Zhi, 2021, 59(11):957-962. |
[19] | Jiang J, Zhou J, Wei M, et al. Clinical and molecular characteristics of Wiskott-Aldrich Syndrome in five unrelated Chinese families[J]. Scand J Immunol, 2022, 95(1):e13115. |
[20] |
Blancas-Galicia L, Escamilla-Quiroz C, Yamazaki-Nakashimada MA. Wiskott-Aldrich syndrome: an updated review[J]. Rev Alerg Mex, 2011, 58(4):213-218.
pmid: 24007832 |
[21] |
Levin C, Koren A, Pretorius E, et al. Deleterious mutation in the FYB gene is associated with congenital autosomal recessive small-platelet thrombocytopenia[J]. J Thromb Haemost, 2015, 13(7):1285-1292.
doi: 10.1111/jth.12966 pmid: 25876182 |
[22] |
Spindler M, van Eeuwijk JMM, Schurr Y, et al. ADAP deficiency impairs megakaryocyte polarization with ectopic proplatelet release and causes microthrombocytopenia[J]. Blood, 2018, 132(6):635-646.
doi: 10.1182/blood-2018-01-829259 pmid: 29950291 |
[23] | Brigida I, Zoccolillo M, Cicalese MP, et al. T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency[J]. Blood, 2018, 132(22):2362-2374. |
[24] |
Kahr WH, Pluthero FG, Elkadri A, et al. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease[J]. Nat Commun, 2017, 8:14816.
doi: 10.1038/ncomms14816 |
[25] |
Marconi C, Di Buduo CA, LeVine K, et al. Loss-of-function mutations in PTPRJ cause a new form of inherited thrombocytopenia[J]. Blood, 2019, 133(12):1346-1357.
doi: 10.1182/blood-2018-07-859496 |
[26] |
Sims MC, Mayer L, Collins JH, et al. Novel manifestations of immune dysregulation and granule defects in gray platelet syndrome[J]. Blood, 2020, 136(17):1956-1967.
doi: 10.1182/blood.2019004776 |
[27] |
Pluthero FG, Kahr WHA. Gray platelet syndrome: NBEAL2 mutations are associated with pathology beyond megakaryocyte and platelet function defects[J]. J Thromb Haemost, 2021, 19(2):318-322.
doi: 10.1111/jth.15177 pmid: 33300270 |
[28] | Liang M, Soomro A, Tasneem S, et al. Enhancer-gene rewiring in the pathogenesis of Quebec platelet disorder[J]. Blood, 2020, 136(23):2679-2690. |
[29] |
Frontini M. Breaking barriers: Quebec platelet disorder[J]. Blood, 2020, 136(23):2603-2604.
doi: 10.1182/blood.2020008213 pmid: 33270854 |
[30] |
Bastida JM, Morais S, Palma-Barqueros V, et al. Identification of novel variants in ten patients with Hermansky-Pudlak syndrome by high-throughput sequencing[J]. Ann Med, 2019, 51(2):141-148.
doi: 10.1080/07853890.2019.1587498 pmid: 30990103 |
[31] |
Merideth MA, Introne WJ, Wang JA, et al. Genetic variants associated with Hermansky- Pudlak syndrome[J]. Platelets, 2020, 31(4):544-547.
doi: 10.1080/09537104.2019.1663810 pmid: 32436471 |
[32] |
Huizing M, Malicdan MCV, Wang JA, et al. Towards the targeted management of Chediak-Higashi syndrome[J]. Orphanet J Rare Dis, 2014, 9:132.
doi: 10.1186/s13023-014-0132-6 |
[33] | Castano-Jaramillo LM, Lugo-Reyes SO, Cruz Munoz ME, et al. Diagnostic and therapeutic caveats in Griscelli syndrome[J]. Scand J Immunol, 2021, 93(6):e13034. |
[34] |
Nurden A. Profiling the genetic and molecular cha-racteristics of glanzmann thrombasthenia: can it guide current and future therapies?[J]. J Blood Med, 2021, 12:581-599.
doi: 10.2147/JBM.S273053 pmid: 34267570 |
[35] |
Botero JP, Lee K, Branchford BR, et al. Glanzmann thrombasthenia: genetic basis and clinical correlates[J]. Haematologica, 2020, 105(4):888-894.
doi: 10.3324/haematol.2018.214239 |
[36] |
Jandrot-Perrus M, Hermans C, Mezzano D. Platelet glycoprotein VI genetic quantitative and qualitative defects[J]. Platelets, 2019, 30(6):708-713.
doi: 10.1080/09537104.2019.1610166 pmid: 31068042 |
[37] |
Noris P, Guidetti GF, Conti V, et al. Autosomal dominant thrombocytopenias with reduced expression of glycoprotein Ia[J]. Thromb Haemost, 2006, 95(3):483-489.
doi: 10.1160/TH05-06-0421 |
[38] |
Cattaneo M. The platelet P2Y12 receptor for adenosine diphosphate: congenital and drug-induced defects[J]. Blood, 2011, 117(7):2102-2112.
doi: 10.1182/blood-2010-08-263111 pmid: 20966167 |
[39] |
Palma-Barqueros V, Bohdan N, Revilla N, et al. PTGS1 gene variations associated with bleeding and platelet dysfunction[J]. Platelets, 2021, 32(5):710-716.
doi: 10.1080/09537104.2020.1782370 |
[40] |
Palma-Barqueros V, Crescente M, de la Morena ME, et al. A novel genetic variant in PTGS1 affects N-glycosylation of cyclooxygenase-1 causing a dominant-negative effect on platelet function and bleeding diajournal[J]. Am J Hematol, 2021, 96(3):E83-E88.
doi: 10.1002/ajh.26076 pmid: 33326144 |
[41] |
Rodeghiero F, Tosetto A, Abshire T, et al. ISTH/SSC joint VWF and Perinatal/Pediatric Hemostasis Subcommittees Working Group. ISTH/SSC bleeding assessment tool: a standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders[J]. J Thromb Haemost, 2010, 8(9):2063-2065.
doi: 10.1111/j.1538-7836.2010.03975.x pmid: 20626619 |
[42] |
Federici AB, Bucciarelli P, Castaman G, et al. The bleeding score predicts clinical outcomes and replacement therapy in adults with von Willebrand disease[J]. Blood, 2014, 123(26):4037-4044.
doi: 10.1182/blood-2014-02-557264 pmid: 24786773 |
[43] |
Mathews N, Rivard GE, Bonnefoy A. Glanzmann thrombasthenia: perspectives from clinical practice on accurate diagnosis and optimal treatment strategies[J]. J Blood Med, 2021, 12:449-463.
doi: 10.2147/JBM.S271744 |
[44] |
Lambert MP. Inherited platelet disorders: a modern approach to evaluation and treatments[J]. Hematol Oncol Clin North Am, 2019, 33(3):471-487.
doi: 10.1016/j.hoc.2019.01.008 |
[45] |
Leissinger C, Carcao M, Gill JC, et al. Desmopressin (DDAVP) in the management of patients with congenital bleeding disorders[J]. Haemophilia, 2014, 20(2):158-167.
doi: 10.1111/hae.12254 pmid: 23937614 |
[46] |
Poon MC. The use of recombinant activated factor VII in patients with Glanzmann’s thrombasthenia[J]. Thromb Haemost, 2021, 121(3):332-340.
doi: 10.1055/s-0040-1718373 |
[47] | Hoffman M, Monroe III DM, Roberts HR. Activated factor VII activates factors IX and X on the surface of activated platelets: thoughts on the mechanism of action of high-dose activated factor VII[J]. Blood Coagul Fibrinolysis, 1998, 9(Suppl 1):S61-S65. |
[48] |
Monroe DM, Hoffman M, Oliver JA, et al. Platelet activity of high-dose factor VIIa is independent of tissue factor[J]. Br J Haematol, 1997, 99(3):542-547.
doi: 10.1046/j.1365-2141.1997.4463256.x |
[49] |
Oshima K, Imai K, Albert MH, et al. Hematopoietic stem cell transplantation for X-Linked thrombocytopenia with mutations in the WAS gene[J]. J Clin Immunol, 2015, 35(1):15-21.
doi: 10.1007/s10875-014-0105-5 |
[50] |
Mallhi KK, Petrovic A, Ochs HD. Hematopoietic stem cell therapy for Wiskott-Aldrich syndrome: improved outcome and quality of life[J]. J Blood Med, 2021, 12:435-447.
doi: 10.2147/JBM.S232650 |
[51] |
Hacein-Bey Abina S, Gaspar HB, Blondeau J, et al. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome[J]. JAMA, 2015, 313(15):1550-1563.
doi: 10.1001/jama.2015.3253 pmid: 25898053 |
[1] | 张炜华, 邹丽萍, 任海涛, 关鸿志. 警惕儿童自身免疫性脑炎诊治陷阱[J]. 临床儿科杂志, 2023, 41(9): 644-649. |
[2] | 季涛云. 发育性癫痫性脑病基因治疗展望[J]. 临床儿科杂志, 2023, 41(9): 650-655. |
[3] | 侯池, 陈文雄, 廖寅婷, 吴文晓, 田杨, 朱海霞, 彭炳蔚, 曾意茹, 吴汶霖, 陈宗宗, 李小晶. 儿童自身免疫性胶质纤维酸性蛋白星形胶质细胞病临床分析[J]. 临床儿科杂志, 2023, 41(9): 656-660. |
[4] | 杨雅婷, 蔡玥昊, 方琼, 陈琅, 陈巧彬, 林志, 吴菲菲, 林萌. 儿童特发性和症状性枕叶癫痫临床分析[J]. 临床儿科杂志, 2023, 41(9): 668-673. |
[5] | 孙娟, 李海英, 贾沛生, 王怀立. 儿童暴发性心肌炎12例临床分析[J]. 临床儿科杂志, 2023, 41(9): 692-696. |
[6] | 俞蕙. 碳青霉烯类耐药铜绿假单胞菌耐药机制与治疗现状[J]. 临床儿科杂志, 2023, 41(8): 561-565. |
[7] | 沈楠, 杜白露. 血液肿瘤患儿侵袭性真菌感染诊治和管理策略[J]. 临床儿科杂志, 2023, 41(8): 571-577. |
[8] | 张文妍, 姚子明, 张学军, 张耀东, 王凌飞, 胡旭昀, 郝婵娟. TRPV4基因变异引起先天性骨病遗传学分析[J]. 临床儿科杂志, 2023, 41(7): 530-536. |
[9] | 唐怡珺, 张倩文, 王依柔, 陈瑶, 李辛, 李娟, 王剑, 王秀敏. Kallmann综合征临床特点及基因型分析[J]. 临床儿科杂志, 2023, 41(7): 537-542. |
[10] | 邱文娟, 杜陶子, 夏瑜. 儿童遗传代谢病急性期的营养管理[J]. 临床儿科杂志, 2023, 41(6): 401-405. |
[11] | 习必鑫, 胡群, 赵馨, 刘爱国. 儿童造血干细胞移植后毛霉菌病临床诊疗进展[J]. 临床儿科杂志, 2023, 41(4): 311-315. |
[12] | 吴小艳, 张文知, 彭云. 肠道菌群与异基因干细胞移植后移植物抗宿主病的关系与展望[J]. 临床儿科杂志, 2023, 41(3): 161-166. |
[13] | 薛玉娟, 陆爱东, 王毓, 贾月萍, 左英熹, 张乐萍. 儿童急性淋巴细胞白血病治疗失败相关因素分析[J]. 临床儿科杂志, 2023, 41(3): 204-209. |
[14] | 朱登纳, 牛国辉. 儿童癫痫的长程管理[J]. 临床儿科杂志, 2023, 41(3): 235-240. |
[15] | 习必鑫, 胡群, 刘爱国. 范可尼贫血基因治疗研究进展[J]. 临床儿科杂志, 2023, 41(2): 156-160. |
|