[1] |
Tangye SG, Al-Herz W, Bousfiha A, et al. Correction to: human inborn errors of immunity: 2019 update on the classification from the international union of immunological societies expert committee[J]. J Clin Immunol, 2020, 40(1): 24-64.
doi: 10.1007/s10875-019-00737-x
pmid: 31953710
|
[2] |
Kumrah R, Vignesh P, Patra P, et al. Genetics of severe combined immunodeficiency[J]. Genes Dis, 2019, 7(1): 52-61.
|
[3] |
Hernandez JD, Hsieh EWY. A great disturbance in the force: IL-2 receptor defects disrupt immune homeostasis[J]. Curr Opin Pediatr, 2022, 34(6): 580-588.
doi: 10.1097/MOP.0000000000001181
pmid: 36165614
|
[4] |
Lim CK, Abolhassani H, Appelberg SK, et al. IL2RG hypomorphic mutation: identification of a novel pathogenic mutation in exon 8 and a review of the literature[J]. Allergy Asthma Clin Immunol, 2019, 15: 2.
|
[5] |
Bustamante Ogando JC, Partida Gaytán A, Aldave Becerra JC, et al. Latin American consensus on the supportive management of patients with severe combined immunodeficiency[J]. J Allergy Clin Immunol, 2019, 144(4): 897-905.
doi: S0091-6749(19)31040-1
pmid: 31419546
|
[6] |
Gatti RA, Meuwissen HJ, Allen HD, et al. Immunological reconstitution of sex-linked lymphopenic immunological deficiency[J]. Lancet, 1968, 2(7583): 1366-1369.
pmid: 4177932
|
[7] |
Miyamoto S, Umeda K, Kurata M, et al. Hematopoietic cell transplantation for inborn errors of immunity other than severe combined immunodeficiency in Japan: retrospective analysis for 1985-2016[J]. J Clin Immunol, 2022, 42(3): 529-545.
doi: 10.1007/s10875-021-01199-w
pmid: 34981329
|
[8] |
Lankester AC, Albert MH, Booth C, et al. EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity[J]. Bone Marrow Transplant, 2021, 56(9): 2052-2062.
|
[9] |
Pai SY, Logan BR, Griffith LM, et al. Transplantation outcomes for severe combined immunodeficiency, 2000-2009[J]. N Engl J Med, 2014, 371(5): 434-446.
|
[10] |
Ozturk E, Catak MC, Kiykim A, et al. Correction to: clinical and laboratory factors affecting the prognosis of severe combined immunodeficiency[J]. J Clin Immunol, 2023, 43(5): 1036-1050.
|
[11] |
Gennery AR. The challenges presented by haematopoietic stem cell transplantation in children with primary immunodeficiency[J]. Br Med Bull, 2020, 135(1): 4-15.
|
[12] |
Manor U, Lev A, Simon AJ, et al. Immune reconstitution after HSCT in SCID-a cohort of conditioned and unconditioned patients[J]. Immunol Res, 2019, 67(2-3):166-175.
doi: 10.1007/s12026-019-09081-z
pmid: 31222511
|
[13] |
Miggelbrink AM, Logan BR, Buckley RH, et al. B-cell differentiation and IL-21 response in IL2RG/JAK3 SCID patients after hematopoietic stem cell transplantation[J]. Blood, 2018, 131(26): 2967-2977.
doi: 10.1182/blood-2017-10-809822
pmid: 29728406
|
[14] |
Tsilifis C, Lum SH, Nademi Z, et al. TCRαβ-depleted haploidentical grafts are a safe alternative to HLA-matched unrelated donor stem cell transplants for infants with severe combined immunodeficiency[J]. J Clin Immunol, 2022, 42(4): 851-858.
doi: 10.1007/s10875-022-01239-z
pmid: 35305204
|
[15] |
Hacein-Bey-Abina S, Pai SY, Gaspar HB, et al. A modified γ-retrovirus vector for X-linked severe combined immunodeficiency[J]. N Engl J Med, 2014, 371(15): 1407-1417.
|
[16] |
Pai SY, Thrasher AJ. Gene therapy for X-linked severe combined immunodeficiency: historical outcomes and current status[J]. J Allergy Clin Immunol, 2020, 146(2): 258-261.
|
[17] |
Booth C, Kohn DB, Armant M, et al. Lentiviral gene therapy with low dose conditioning for X-linked SCID results in complete immune reconstitution and no evidence of clonal expansion[J]. Blood, 2022, 140: 7770-7771.
|
[18] |
Sung-Yun Pai CB, Kohn DB, Armant MA, et al. Universal survival and superior immune reconstitution after lentiviral gene therapy with low dose conditioning for X-linked SCID (SCID-X1)[J]. Mol Ther, 2023, 31: 1-8.
|
[19] |
Touzot F, Moshous D, Creidy R, et al. Faster T-cell development following gene therapy compared with haploidentical HSCT in the treatment of SCID-X1[J]. Blood, 2015, 125(23): 3563-3569.
doi: 10.1182/blood-2014-12-616003
pmid: 25869287
|
[20] |
Liu X, Li G, Liu Y, et al. Advances in CRISPR/Cas gene therapy for inborn errors of immunity[J]. Front Immunol, 2023, 14: 1111777.
|
[21] |
Brault J, Liu T, Liu S, et al. CRISPR-Cas9-AAV versus lentivector transduction for genome modification of X-linked severe combined immunodeficiency hematopoietic stem cells[J]. Front Immunol, 2023, 13: 1067417.
|
[22] |
Jang Y, Kim YS, Wielgosz MM, et al. Optimizing lentiviral vector transduction of hematopoietic stem cells for gene therapy[J]. Gene Ther, 2020, 27(12): 545-556.
|
[23] |
Bauler M, Roberts JK, Wu CC, et al. Production of lentiviral vectors using suspension cells grown in serum-free media[J]. Mol Ther Methods Clin Dev, 2019, 17: 58-68.
|
[24] |
Bernadin O, Amirache F, Girard-Gagnepain A, et al. Baboon envelope LVs efficiently transduced human adult, fetal, and progenitor T cells and corrected SCID-X1 T-cell deficiency[J]. Blood Adv, 2019, 3(3): 461-475.
doi: 10.1182/bloodadvances.2018027508
pmid: 30755435
|