临床儿科杂志 ›› 2022, Vol. 40 ›› Issue (8): 634-640.doi: 10.12372/jcp.2022.21e1322
• 继续医学教育 • 上一篇
张海情1,2, 陈艳萍1, 张瑾1
收稿日期:
2021-09-13
出版日期:
2022-08-15
发布日期:
2022-08-09
ZHANG Haiqing1,2, CHEN Yanping1, ZHANG Jin1
Received:
2021-09-13
Online:
2022-08-15
Published:
2022-08-09
摘要:
肺炎支原体(MP)是社区获得性肺炎的主要病原体之一,可引起呼吸道症状及其他肺外并发症,大环内酯类抗生素是治疗MP感染的首选药物。近年来,随着MP感染率的逐渐增加及抗生素的广泛应用,大环内酯类药物耐药情况日趋严重。疫苗是预防与控制病原菌流行、感染及致病的最佳科学手段。目前,兽用MP疫苗已在国内外上市,并取得了良好的保护效果,而针对人的MP疫苗仍处于研发阶段。文章对MP相关疫苗进行综述,以期为后续人用MP疫苗的研发提供一定的参考。
张海情, 陈艳萍, 张瑾. 肺炎支原体疫苗研究进展[J]. 临床儿科杂志, 2022, 40(8): 634-640.
ZHANG Haiqing, CHEN Yanping, ZHANG Jin. Research progress of Mycoplasma pneumoniae vaccine[J]. Journal of Clinical Pediatrics, 2022, 40(8): 634-640.
[1] | Nakane D, Kenri T, Matsuo L, et al. Systematic structural analyses of attachment organelle in Mycoplasma pneumoniae[J]. PLoS Pathog, 2015, 11(12): e1005299. |
[2] | Guo DX, Hu WJ, Wei R, et al. Epidemiology and mechanism of drug resistance of Mycoplasma pneumoniae in Beijing, China: a multicenter study[J]. Bosn J Basic Med Sci, 2019, 19(3): 288-296. |
[3] |
Qu J, Chen S, Bao F, et al. Molecular characterization and analysis of Mycoplasma pneumoniae among patients of all ages with community-acquired pneumonia during an epidemic in China[J]. Int J Infect Dis, 2019, 83: 26-31.
doi: 10.1016/j.ijid.2019.03.028 |
[4] |
Zhao F, Li J, Liu J, et al. Antimicrobial susceptibility and molecular characteristics of Mycoplasma pneumoniae isolates across different regions of China[J]. Antimicrob Resist Infect Control, 2019, 8: 143.
doi: 10.1186/s13756-019-0576-5 |
[5] |
Somes MP, Turner RM, Dwyer LJ, et al. Estimating the annual attack rate of seasonal influenza among unvaccinated individuals: a systematic review and meta-analysis[J]. Vaccine, 2018, 36(23): 3199-3207..
doi: 10.1016/j.vaccine.2018.04.063 |
[6] |
Yu Q, Li X, Fan M, et al. The impact of childhood pneumococcal conjugate vaccine immunisation on all-cause pneumonia admissions in Hong Kong: a 14-year population-based interrupted time series analysis[J]. Vaccine, 2021, 39(19): 2628-2635.
doi: 10.1016/j.vaccine.2021.03.090 |
[7] |
Prentice S, Nassanga B, Webb EL, et al. BCG-induced non-specific effects on heterologous infectious disease in Ugandan neonates: an investigator-blind randomised controlled trial[J]. Lancet Infect Dis, 2021, 21(7): 993-1003.
doi: 10.1016/S1473-3099(20)30653-8 pmid: 33609457 |
[8] |
Linchevski I, Klement E, Nir-Paz R. Mycoplasma pneumoniae vaccine protective efficacy and adverse reactions--systematic review and meta-analysis[J]. Vaccine, 2009, 27(18): 2437-2446.
doi: 10.1016/j.vaccine.2009.01.135 pmid: 19368785 |
[9] |
Smith CB, Friedewald WT, Chanock RM. Inactivated Mycoplasma pneumoniae vaccine. Evaluation in volunteers[J]. JAMA, 1967, 199(6): 353-358.
doi: 10.1001/jama.1967.03120060051007 |
[10] |
Unni PA, Ali AMMT, Rout M, et al. Designing of an epitope-based peptide vaccine against walking pneumonia: an immunoinformatics approach[J]. Mol Biol Rep, 2019, 46(1): 511-527.
doi: 10.1007/s11033-018-4505-0 |
[11] |
Rodman Berlot J, Krivec U, Mrvič T, et al. Mycoplasma pneumoniae P 1 genotype indicates severity of lower respiratory tract infections in children[J]. J Clin Microbiol, 2021, 59(8): e0022021.
doi: 10.1128/JCM.00220-21 |
[12] | Williams CR, Chen L, Sheppard ES, et al. Distinct Mycoplasma pneumoniae interactions with sulfated and sialylated receptors[J]. Infect Immun, 2020, 88(11): e00392-20. |
[13] |
Chaudhry R, Ghosh A, Chandolia A. Pathogenesis of Mycoplasma pneumoniae: an update[J]. Indian J Med Microbiol, 2016, 34(1): 7-16.
doi: 10.4103/0255-0857.174112 pmid: 26776112 |
[14] |
Widjaja M, Berry IJ, Jarocki VM, et al. Cell surface processing of the P1 adhesin of Mycoplasma pneumoniae identifies novel domains that bind host molecules[J]. Sci Rep, 2020, 10(1): 6384.
doi: 10.1038/s41598-020-63136-y |
[15] |
Chourasia BK, Chaudhry R, Malhotra P. Delineation of immunodominant and cytadherence segment(s) of Mycoplasma pneumoniae P1 gene[J]. BMC Microbiol, 2014, 14: 108.
doi: 10.1186/1471-2180-14-108 |
[16] |
Schurwanz N, Jacobs E, Dumke R. Strategy to create chimeric proteins derived from functional adhesin regions of Mycoplasma pneumoniae for vaccine development[J]. Infect immun, 2009, 77(11): 5007-5015.
doi: 10.1128/IAI.00268-09 pmid: 19667041 |
[17] | 贾飞勇, 梁东, 傅文永, 等. 肺炎支原体P1蛋白预防动物支原体肺炎的研究[J]. 中华儿科杂志, 2001, 39(5): 293-295. |
[18] |
Meng YL, Wang WM, Lv DD, et al. The effect of platycodin D on the expression of cytoadherence proteins P1 and P30 in Mycoplasma pneumoniae models[J]. Environ Toxicol Pharmacol, 2017, 49: 188-193.
doi: 10.1016/j.etap.2017.01.001 |
[19] |
Kenri T, Kawakita Y, Kudo H, et al. Production and characterization of recombinant P1 adhesin essential for adhesion, gliding, and antigenic variation in the human pathogenic bacterium, Mycoplasma pneumoniae[J]. Biochem Biophys Res Commun, 2019, 508(4): 1050-1055.
doi: 10.1016/j.bbrc.2018.11.132 |
[20] |
Drasbek M, Christiansen G, Drasbek KR, et al. Interaction between the P1 protein of Mycoplasma pneumoniae and receptors on HEp-2 cells[J]. Microbiology (Reading), 2007, 153(Pt 11): 3791-3799.
doi: 10.1099/mic.0.2007/010736-0 |
[21] | 朱翠明, 汪世平, 吴移谋, 等. 肺炎支原体P1蛋白片段免疫学活性及黏附功能的研究[J]. 中华微生物学和免疫学杂志, 2012, 32(8): 706-710. |
[22] |
Varshney AK, Chaudhry R, Kabra SK, et al. Cloning, expression, and immunological characterization of the P30 protein of Mycoplasma pneumoniae[J]. Clin vaccine immunol, 2008, 15(2): 215-220.
doi: 10.1128/CVI.00283-07 pmid: 18032594 |
[23] |
Hausner M, Schamberger A, Naumann W, et al. Development of protective anti-Mycoplasma pneumoniae antibodies after immunization of guinea pigs with the combination of a P1-P30 chimeric recombinant protein and chitosan[J]. Microb Pathog, 2013, 64: 23-32.
doi: 10.1016/j.micpath.2013.07.004 |
[24] |
Tabassum I, Chaudhry R, Chourasia BK, et al. Identification of an N-terminal 27 kDa fragment of Mycoplasma pneumoniae P116 protein as specific immunogen in M. pneumoniae infections[J]. BMC Infect Dis, 2010, 10: 350.
doi: 10.1186/1471-2334-10-350 pmid: 21144026 |
[25] |
Svenstrup HF, Nielsen PK, Drasbek M, et al. Adhesion and inhibition assay of Mycoplasma genitalium and M. pneumoniae by immunofluorescence microscopy[J]. J Med Microbiol, 2002, 51(5): 361-373.
doi: 10.1099/0022-1317-51-5-361 pmid: 11990488 |
[26] |
Vizarraga D, Kawamoto A, Matsumoto U, et al. Immunodominant proteins P1 and P40/P90 from human pathogen Mycoplasma pneumoniae[J]. Nat Commun, 2020, 11(1): 5188.
doi: 10.1038/s41467-020-18777-y pmid: 33057023 |
[27] |
Chen C, Yong Q, Jun G, et al. Designing, expression and immunological characterization of a chimeric protein of Mycoplasma pneumoniae[J]. Protein Pept Lett, 2016, 23(7): 592-596.
doi: 10.2174/0929866523666160502155414 |
[28] |
Chen Y, Wu Y, Qin L, et al. T-B cell epitope peptides induce protective immunity against Mycoplasma pneumoniae respiratory tract infection in BALB/c mice[J]. Immunobiology, 2021, 226(3): 152077.
doi: 10.1016/j.imbio.2021.152077 |
[29] |
Vilela Rodrigues TC, Jaiswal AK, de Sarom A, et al. Reverse vaccinology and subtractive genomics reveal new therapeutic targets against Mycoplasma pneumoniae: a causative agent of pneumonia[J]. R Soc Open Sci, 2019, 6(7): 190907.
doi: 10.1098/rsos.190907 |
[30] | Ramasamy K, Balasubramanian S, Manickam K, et al. Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin uses a novel KELED sequence for retrograde transport and subsequent cytotoxicity[J]. mBio, 2018, 9(1): e01663-17. |
[31] | Balasubramanian S, Pandranki L, Maupin S, et al. Disulfide bond of Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin is essential to maintain the ADP-ribosylating and vacuolating activities[J]. Cell Microbiol, 2019, 21(8): e13032. |
[32] |
Kannan TR, Baseman JB. ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens[J]. Proc Natl Acad Sci U S A, 2006, 103(17): 6724-6729.
doi: 10.1073/pnas.0510644103 pmid: 16617115 |
[33] |
Medina JL, Brooks EG, Chaparro A, et al. Mycoplasma pneumoniae CARDS toxin elicits a functional IgE response in Balb/c mice[J]. PLoS One, 2017, 12(2): e0172447.
doi: 10.1371/journal.pone.0172447 |
[34] |
Zhu C, Wang S, Hu S, et al. Protective efficacy of a Mycoplasma pneumoniae P1C DNA vaccine fused with the B subunit of Escherichia coli heat-labile enterotoxin[J]. Can J Microbiol, 2012, 58(6): 802-810.
doi: 10.1139/w2012-051 |
[35] |
Lin L, Qiao M, Zhang X, et al. Site-selective reactions for the synthesis of glycoconjugates in polysaccharide vaccine development[J]. Carbohydr Polym, 2020, 230: 115643.
doi: 10.1016/j.carbpol.2019.115643 |
[36] |
Brunner H. Protective efficacy of Mycoplasma pneumoniae polysaccharides[J]. Isr J Med Sci, 1981, 17(7): 678-681.
pmid: 6793538 |
[37] |
Razin S, Prescott B, Chanock RM. Immunogenicity of Mycoplasma pneumoniae glycolipids: a novel approach to the production of antisera to membrane lipids[J]. Proc Natl Acad Sci U S A, 1970, 67(2): 590-597.
pmid: 4943173 |
[38] | Meyer Sauteur PM, Graça C, et al. Antibodies to protein but not glycolipid structures are important for host defense against Mycoplasma pneumoniae[J]. Infect Immun, 2019, 87(2): e00663-18. |
[39] |
Jiang MJ, Liu S J, Su L, et al. Intranasal vaccination with Listeria ivanovii as vector of Mycobacterium tuberculosis antigens promotes specific lung-localized cellular and humoral immune responses[J]. Sci Rep, 2020, 10(1): 302.
doi: 10.1038/s41598-019-57245-6 |
[40] |
Mahdy SE, Sijing L, Lin S, et al. Development of a recombinant vaccine against foot and mouth disease utilizing mutant attenuated Listeria ivanovii strain as a live vector[J]. J Virol Methods, 2019, 273: 113722.
doi: 10.1016/j.jviromet.2019.113722 |
[41] |
Gerlach T, Elbahesh H, Saletti G, et al. Recombinant influenza A viruses as vaccine vectors[J]. Expert Rev Vaccines, 2019, 18(4): 379-392.
doi: 10.1080/14760584.2019.1582338 pmid: 30777467 |
[42] |
Mara AB, Gavitt TD, Tulman ER, et al. Lipid moieties of Mycoplasma pneumoniae lipoproteins are the causative factor of vaccine-enhanced disease[J]. NPJ Vaccines, 2020, 5(1): 31.
doi: 10.1038/s41541-020-0181-x |
[1] | 高龙飞, 张景丽, 吴晓杰, 吴会芳, 段晨初, 康军聪, 张中平. IL-17A对于儿童难治性肺炎支原体肺炎预测作用[J]. 临床儿科杂志, 2023, 41(5): 366-369. |
[2] | 郭芳, 康磊, 杜非凡, 贾艳红, 徐梅先. 肺炎支原体感染致视神经炎为突出表现的儿童髓鞘少突胶质细胞糖蛋白抗体相关疾病1例报告[J]. 临床儿科杂志, 2023, 41(10): 703-707. |
[3] | 刘峰. 肺炎支原体肺炎与预后相关的临床指标[J]. 临床儿科杂志, 2022, 40(4): 247-251. |
[4] | 黄坤玲,牛波,路素坤,等. 肺炎支原体肺炎并发心腔内血栓、肺栓塞1 例并文献复习[J]. 临床儿科杂志, 2021, 39(6): 421-. |
[5] | 于聪,吕伟,张晓英. MP 23S rRNA A2063G 基因变异的社区获得性肺炎患儿临床表型与胸部影像的关系[J]. 临床儿科杂志, 2021, 39(4): 265-. |
[6] | 袁晓旭,贾春梅,姜采荣. 肝细胞生长因子对儿童重症肺炎支原体肺炎的早期诊断及动态监测意义[J]. 临床儿科杂志, 2021, 39(11): 855-. |
[7] | 王崇杰,骆学勤,罗健,等. 46 例重症肺炎支原体肺炎合并胸腔积液患儿临床及预后分析[J]. 临床儿科杂志, 2020, 38(4): 269-. |
[8] | 谢晓虹,王崇杰,张光莉,等. 肺炎支原体肺炎患儿支气管肺泡灌洗液细胞因子特点及相关性分析[J]. 临床儿科杂志, 2020, 38(12): 884-. |
[9] | 马彩霞,陈镜龙,陆泳,等. 肺泡灌洗液宏基因组测序在儿童重症肺炎支原体肺炎混合感染中的诊断价值[J]. 临床儿科杂志, 2020, 38(12): 891-. |
[10] | 陈秋雨,陆敏. 疱疹病毒抗体阳性肺炎支原体肺炎患儿免疫状况及临床特征[J]. 临床儿科杂志, 2020, 38(1): 1-. |
[11] | 王秀芳,李伟霞,张艳丽,等. 儿童肺炎支原体坏死性肺炎预测指标研究[J]. 临床儿科杂志, 2019, 37(6): 409-. |
[12] | 易茜,吴毅,李媛媛,等. 肺炎支原体肺炎闭塞性支气管炎1 例报告并文献复习[J]. 临床儿科杂志, 2019, 37(6): 423-. |
[13] | 江李莉,万姣,索风涛,等. 肺炎支原体塑型性支气管炎5 例临床分析[J]. 临床儿科杂志, 2019, 37(4): 273-. |
[14] | 万姣,江李莉,索风涛,等. 鼻咽抽吸物MP-DNA拷贝数与肺炎支原体肺炎临床表现的关系[J]. 临床儿科杂志, 2019, 37(2): 81-. |
[15] | 帅金凤,黄坤玲,刘建华,杨会荣,牛波,路素坤,曹丽洁,及立立. 肺炎支原体感染致儿童坏死性肺炎的临床特征分析[J]. 临床儿科杂志, 2019, 37(1): 30-33. |
|