[1] |
Crisafulli S, Sultana J, Fontana A, et al. Global epidemiology of Duchenne muscular dystrophy: an updated systematic review and meta-analysis[J]. Orphanet J Rare Dis, 2020, 15(1): 141.
doi: 10.1186/s13023-020-01430-8
pmid: 32503598
|
[2] |
Megarbane A, Bizzari S, Deepthi A, et al. A 20-year clinical and genetic neuromuscular cohort analysis in Lebanon: an international effort[J]. J Neuromuscul Dis, 2022, 9(1): 193-210.
|
[3] |
Duan D, Goemans N, Takeda S, et al. Duchenne muscular dystrophy[J]. Nat Rev Dis Primers, 2021, 7(1): 13.
doi: 10.1038/s41572-021-00248-3
pmid: 33602943
|
[4] |
Aartsma-Rus A, Van Deutekom JC, Fokkema IF, et al. Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule[J]. Muscle Nerve, 2006, 34(2): 135-144.
doi: 10.1002/mus.20586
pmid: 16770791
|
[5] |
Magri F, Govoni A, D'Angelo MG, et al. Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow-up[J]. J Neurol, 2011, 258(9): 1610-1623.
doi: 10.1007/s00415-011-5979-z
pmid: 21399986
|
[6] |
Xu Y, Wang H, Xiao B, et al. Novel noncontiguous duplications identified with a comprehensive mutation analysis in the DMD gene by DMD gene-targeted sequencing[J]. Gene, 2018, 645: 113-118.
doi: 10.1016/j.gene.2017.12.037
|
[7] |
Guo R, Zhu G, Zhu H, et al. DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy[J]. J Hum Genet, 2015, 60(8): 435-442.
doi: 10.1038/jhg.2015.43
|
[8] |
Mak AC, Lai YY, Lam ET, et al. Genome-wide structural variation detection by genome mapping on nanochannel arrays[J]. Genetics, 2016, 202(1): 351-362.
doi: 10.1534/genetics.115.183483
pmid: 26510793
|
[9] |
Cao H, Hastie AR, Cao D, et al. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology[J]. Gigascience, 2014, 3(1): 34.
doi: 10.1186/2047-217X-3-34
pmid: 25671094
|
[10] |
Barseghyan H, Tang W, Wang RT, et al. Next-generation mapping: a novel approach for detection of pathogenic structural variants with a potential utility in clinical diagnosis[J]. Genome Med, 2017, 9(1): 90.
doi: 10.1186/s13073-017-0479-0
pmid: 29070057
|
[11] |
Redin C, Brand H, Collins RL, et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies[J]. Nat Genet, 2017, 49(1): 36-45.
doi: 10.1038/ng.3720
pmid: 27841880
|
[12] |
北京医学会罕见病分会, 北京医学会神经内科分会神经肌肉病学组, 中国肌营养不良协作组. Duchenne型肌营养不良多学科管理专家共识[J]. 中华医学杂志, 2018, (35): 2803-2814.
|
[13] |
McNaughton JC, Hughes G, Jones WA, et al. The evolution of an intron: analysis of a long, deletion-prone intron in the human dystrophin gene[J]. Genomics, 1997, 40(2): 294-304.
pmid: 9119397
|
[14] |
Bladen CL, Salgado D, Monges S, et al. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations[J]. Hum Mutat, 2015, 36(4): 395-402.
doi: 10.1002/humu.22758
pmid: 25604253
|
[15] |
Kong X, Zhong X, Liu L, et al. Genetic analysis of 1051 Chinese families with Duchenne/Becker Muscular Dystrophy[J]. BMC Med Genet, 2019, 20(1): 139.
doi: 10.1186/s12881-019-0873-0
pmid: 31412794
|
[16] |
Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management[J]. Lancet Neurol, 2018, 17(3): 251-267.
doi: S1474-4422(18)30024-3
pmid: 29395989
|
[17] |
中华医学会医学遗传学分会遗传病临床实践指南撰写组. 杜氏进行性肌营养不良的临床实践指南[J]. 中华医学遗传学杂志, 2020, 37(3): 258-262.
|
[18] |
Hollox EJ, Zuccherato LW, Tucci S. Genome structural variation in human evolution[J]. Trends Genet, 2022, 38(1): 45-58.
doi: 10.1016/j.tig.2021.06.015
|
[19] |
Mantere T, Neveling K, Pebrel-Richard C, et al. Optical genome mapping enables constitutional chromosomal aberration detection[J]. Am J Hum Genet, 2021, 108(8): 1409-1422.
doi: 10.1016/j.ajhg.2021.05.012
pmid: 34237280
|
[20] |
Neveling K, Mantere T, Vermeulen S, et al. Next-generation cytogenetics: comprehensive assessment of 52 hematological malignancy genomes by optical genome mapping[J]. Am J Hum Genet, 2021, 108(8): 1423-1435.
doi: 10.1016/j.ajhg.2021.06.001
pmid: 34237281
|
[21] |
Cummings BB, Marshall JL, Tukiainen T, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing[J]. Sci Transl Med, 2017, 9(386): eaal5209.
doi: 10.1126/scitranslmed.aal5209
|
[22] |
Xie Z, Sun C, Zhang S, et al. Long-read whole-genome sequencing for the genetic diagnosis of dystrophinopathies[J]. Ann Clin Transl Neurol, 2020, 7(10): 2041-2046.
doi: 10.1002/acn3.v7.10
|
[23] |
Lam ET, Hastie A, Lin C, et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly[J]. Nat Biotechnol, 2012, 30(8): 771-776.
pmid: 22797562
|
[24] |
Sahajpal NS, Barseghyan H, Kolhe R, et al. Optical genome mapping as a next-generation cytogenomic tool for detection of structural and copy number variations for prenatal genomic analyses[J]. Genes (Basel), 2021, 12(3): 398.
doi: 10.3390/genes12030398
|
[25] |
Jaratlerdsiri W, Chan EKF, Petersen DC, et al. Next generation mapping reveals novel large genomic rearrangements in prostate cancer[J]. Oncotarget, 2017, 8(14): 23588-23602.
doi: 10.18632/oncotarget.15802
pmid: 28423598
|
[26] |
郝娜, 周京, 李萌萌, 等. 光学基因组图谱技术在染色体结构变异检出的效能及初步应用评估[J]. 中华预防医学杂志, 2022, 56(5): 632-639.
|
[27] |
Dremsek P, Schwarz T, Weil B, et al. Optical genome mapping in routine human genetic diagnostics-its advantages and limitations[J]. Genes (Basel), 2021, 12(12): 1958.
doi: 10.3390/genes12121958
|