[1] |
中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版)[J]. 中华儿科杂志, 2019, 57(4): 252-257.
|
[2] |
Egbe FN, Cowden C, Mwananyanda L, et al. Etiology of bacterial sepsis and isolate resistance patterns in hospitalized neonates in Zambia[J]. Pediatr Infect Dis J, 2023, 10.1097/INF.0000000000004008.
|
[3] |
中华人民共和国卫生部. 医院感染诊断标准(试行)[J]. 中华医学杂志, 2001, 81(5): 314-320.
|
[4] |
Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, et al. The global burden of paediatric and neonatal sepsis: a systematic review[J]. Lancet Respir Med, 2018, 6(3): 223-230.
doi: 10.1016/S2213-2600(18)30063-8
pmid: 29508706
|
[5] |
Zhang J, Chen L, Yang Y, et al. Clinical and laboratory findings to differentiate late-onset sepsis caused by Gram-negative vs Gram-positive bacteria among perterm neonates: A retrospective cohort study[J]. Int Immunopharmacol, 2023, 116: 109769.
doi: 10.1016/j.intimp.2023.109769
|
[6] |
Wu IH, Tsai MH, Lai MY, et al. Incidence, clinical features, and implications on outcomes of neonatal late-onset sepsis with concurrent infectious focus[J]. BMC Infect Dis, 2017, 17(1): 465.
doi: 10.1186/s12879-017-2574-7
pmid: 28673280
|
[7] |
张良娟, 施姣, 杨军兰, 等. 新生儿重症监护室晚发型败血症病原菌变迁及耐药性分析[J]. 临床儿科杂志, 2022, 40(8): 602-607.
|
[8] |
俞元强, 董青艺, 胡劲涛, 等. 新生儿败血症病原菌及耐药性10年回顾性分析[J]. 中国当代儿科杂志, 2022, 24(10): 1111-1116.
|
[9] |
昌兰, 吴银弟, 李朝友. 228例新生儿败血症的病原体分布耐药性及临床特点[J]. 中国妇幼保健, 2022, 37(23): 4401-4405.
|
[10] |
徐俊芳, 平莉莉, 翟淑芬. 不同新生儿败血症病原菌、耐药性及影响因素研究[J]. 中国妇幼健康研究, 2022, 33(8): 6-11.
|
[11] |
陈云波, 嵇金如, 刘志盈, 等. 全国血流感染细菌耐药监测(BRICS)2021年度报告[J]. 中华临床感染病杂志, 2023, 16(1): 33-47.
|
[12] |
宋岐峰, 李国福, 臧彬. 重症监护病房病原菌分布及耐药性趋势分析[J]. 中国中西医结合急救杂志, 2022, 29(1): 17-21.
|
[13] |
Liu J, Fang Z, Yu Y, et al. Pathogens distribution and antimicrobial resistance in bloodstream infections in twenty-five neonatal intensive care units in China, 2017-2019 [J]. Antimicrob Resist Infect Control, 2021, 10(1): 121.
doi: 10.1186/s13756-021-00989-6
|
[14] |
Giannoni E, Agyeman PKA, Stocker M, et al. Neonatal sepsis of early onset, and hospital-acquired and community-acquired late onset: a prospective population-based cohort study[J]. J Pediatr, 2018, 201: 106-114.
doi: 10.1016/j.jpeds.2018.05.048
|
[15] |
Jean-Baptiste N, Benjamin DK, Cohen-Wolkowiez M, et al. Coagulase-negative staphylococcal infections in the neonatal intensive care unit[J]. Infect Control Hosp Epidemiol, 2011, 32(7): 679-686.
doi: 10.1086/660361
|
[16] |
Von Dolinger De Brito D, De Almeida Silva H, Jose Oliveira E, et al. Effect of neonatal intensive care unit environment on the incidence of hospital-acquired infection in neonates[J]. J Hosp Infect, 2007, 65(4): 314-318.
pmid: 17350722
|
[17] |
Osei Sekyere J, Reta MA, Bernard Fourie P. Risk factors for, and molecular epidemiology and clinical outcomes of, carbapenem- and polymyxin-resistant Gram-negative bacterial infections in pregnant women, infants, and toddlers: a systematic review and meta-analyses[J]. Ann N Y Acad Sci, 2021, 1502(1): 54-71.
doi: 10.1111/nyas.v1502.1
|
[18] |
杨新梅. 新生儿病房内医院感染的现状与危险因素[J]. 国际护理学杂志, 2023, 42(2): 235-238.
|
[19] |
Gao H, Evans TW, Finney SJ. Bench-to-bedside review: sepsis, severe sepsis and septic shock - does the nature of the infecting organism matter?[J]. Crit Care, 2008, 12(3): 213.
|
[20] |
Feezor RJ, Oberholzer C, Baker HV, et al. Molecular characterization of the acute inflammatory response to infections with gram-negative versus gram-positive bacteria[J]. Infect Immun, 2003, 71(10): 5803-5813.
doi: 10.1128/IAI.71.10.5803-5813.2003
pmid: 14500502
|
[21] |
Abe R, Oda S, Sadahiro T, et al. Gram-negative bacteremia induces greater magnitude of inflammatory response than Gram-positive bacteremia[J]. Crit Care, 2010, 14(2): R27.
doi: 10.1186/cc8898
|
[22] |
Wang B, Wang QM, Li DX. An Analysis of Predictive Factors for Severe Neonatal Infection and the Construction of a Prediction Model[J]. Infect Drug Resist, 2023, 16: 3561-3574.
doi: 10.2147/IDR.S408126
pmid: 37305733
|
[23] |
Guo J, Luo Y, Wu Y, et al. Clinical characteristic and pathogen spectrum of neonatal sepsis in Guangzhou city from June 2011 to June 2017[J]. Med Sci Monit, 2019, 25: 2296-2304.
doi: 10.12659/MSM.912375
|
[24] |
RESCH B, B R, N H. Comparison between pathogen associated laboratory and clinical parameters in early-onset sepsis of the newborn[J]. Open Microbiol J, 2016, 10: 133-139.
doi: 10.2174/1874285801610010133
pmid: 27478518
|
[25] |
Liu HH, Zhang MW, Guo JB, et al. Procalcitonin and C-reactive protein in early diagnosis of sepsis caused by either Gram-negative or Gram-positive bacteria[J]. Ir J Med Sci, 2017, 186(1): 207-212.
doi: 10.1007/s11845-016-1457-z
|
[26] |
Brodská H, Malíčková K, Adámková V, et al. Significantly higher procalcitonin levels could differentiate Gram-negative sepsis from Gram-positive and fungal sepsis[J]. Clin Exp Med, 2013, 13(3): 165-170.
doi: 10.1007/s10238-012-0191-8
pmid: 22644264
|
[27] |
王丽伟, 刘丽红, 李达. 降钙素原对儿童不同类型病原菌血流感染的诊断价值[J]. 临床血液学杂志, 2019, 32(6): 423-425.
|
[28] |
For The Medusa Study Group, Thomas-Rüddel DO, Poidinger B, et al. Influence of pathogen and focus of infection on procalcitonin values in sepsis patients with bacteremia or candidemia[J]. Crit Care, 2018, 22(1): 128.
doi: 10.1186/s13054-018-2050-9
|