临床儿科杂志 ›› 2024, Vol. 42 ›› Issue (5): 467-473.doi: 10.12372/jcp.2024.23e0595
• 文献综述 • 上一篇
王培培1, 张沛 综述2, 高春林2, 夏正坤 审校1
收稿日期:
2023-07-03
出版日期:
2024-05-15
发布日期:
2024-05-10
基金资助:
Reviewer: WANG Peipei1, ZHANG Pei2, Reviser: GAO Chunlin2, XIA Zhengkun1
Received:
2023-07-03
Online:
2024-05-15
Published:
2024-05-10
摘要:
补体是先天免疫的重要组成部分,也是调节适应性免疫的桥梁,能介导细胞炎症反应和细胞凋亡。补体级联反应受到补体调节蛋白的严格调控,一旦补体过度活化或调节异常,就会导致宿主细胞的损伤。在肾小球微环境中,补体系统调节异常可导致C3肾小球病和非典型溶血尿毒综合征。此外,补体在多种炎性肾脏疾病中过度激活,如抗中性粒细胞胞质抗体相关肾炎、狼疮性肾炎、IgA肾病、膜性肾病和糖尿病肾病等。另外,它还可能通过在缺血再灌注损伤和排斥反应中发挥作用介导移植肾损伤。现对补体在肾小球疾病发病机制中的作用及相关靶向治疗进行综述。
王培培, 张沛, 高春林, 夏正坤. 补体参与儿童肾脏疾病发病机制的再认识[J]. 临床儿科杂志, 2024, 42(5): 467-473.
WANG Peipei, ZHANG Pei, GAO Chunlin, XIA Zhengkun. Re-recognition of the complement involvement in the pathogenesis of kidney diseases in children[J]. Journal of Clinical Pediatrics, 2024, 42(5): 467-473.
[1] | Borza DB. Glomerular basement membrane heparan sulfate in health and disease: A regulator of local complement activation[J]. Matrix Biol, 2017(57-58): 299-310. |
[2] |
Gavriilaki E, Anagnostopoulos A, Mastellos DC. Complement in thrombotic microangiopathies: unraveling ariadne's thread into the labyrinth of complement therapeutics[J]. Front Immunol, 2019, 10: 337.
doi: 10.3389/fimmu.2019.00337 pmid: 30891033 |
[3] | Leon J, LeStang MB, Sberro-Soussan R, et al. Complement-driven hemolytic uremic syndrome[J]. Am J Hematol, 2023, 98(Suppl 4): S44-S56. |
[4] | Blasco M, Guillén-Olmos E, Diaz-Ricart M, et al. Complement mediated endothelial damage in thrombotic microangiopathies[J]. Front Med (Lausanne), 2022, 9: 811504. |
[5] | Özçakar ZB, Ozaltin F, Gülhan B, et al. Transplantation in pediatric aHUS within the era of eculizumab therapy[J]. Pediatr Transplant, 2021, 25(3): e13914. |
[6] |
Tang ZC, Hui H, Shi C, et al. New findings in preventing recurrence and improving renal function in AHUS patients after renal transplantation treated with eculizumab: a systemic review and meta-analyses[J]. Ren Fail, 2023, 45(1): 2231264.
doi: 10.1080/0886022X.2023.2231264 |
[7] |
Fakhouri F, Fila M, Hummel A, et al. Eculizumab discontinuation in children and adults with atypical hemolytic-uremic syndrome: a prospective multicenter study[J]. Blood, 2021, 137(18): 2438-2449.
doi: 10.1182/blood.2020009280 pmid: 33270832 |
[8] |
Palma LMP, Eick RG, Dantas GC, et al. Atypical hemolytic uremic syndrome in Brazil: clinical presentation, genetic findings and outcomes of a case series in adults and children treated with eculizumab[J]. Clin Kidney J, 2021, 14(4): 1126-1135.
doi: 10.1093/ckj/sfaa062 pmid: 33841858 |
[9] |
Jodele S, Dandoy CE, Lane A, et al. Complement blockade for TA-TMA: lessons learned from a large pediatric cohort treated with eculizumab[J]. Blood, 2020, 135(13): 1049-1057.
doi: 10.1182/blood.2019004218 pmid: 31932840 |
[10] |
Heiderscheit AK, Hauer JJ, Smith RJH. C3 glomerulopathy: Understanding an ultra-rare complement-mediated renal disease[J]. Am J Med Genet C Semin Med Genet, 2022, 190(3): 344-357.
doi: 10.1002/ajmg.c.v190.3 |
[11] |
Kant S, Kronbichler A, Sharma P, et al. Advances in understanding of pathogenesis and treatment of immune-mediated kidney disease: a review[J]. Am J Kidney Dis, 2022, 79(4): 582-600.
doi: 10.1053/j.ajkd.2021.07.019 |
[12] |
Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis-a new look at an old entity[J]. N Engl J Med, 2012, 366(12): 1119-1131.
doi: 10.1056/NEJMra1108178 |
[13] |
Rovin BH, Adler SG, Barratt J, et al. Executive summary of the KDIGO 2021 Guideline for the management of glomerular diseases[J]. Kidney Int, 2021, 100(4): 753-779.
doi: 10.1016/j.kint.2021.05.015 pmid: 34556300 |
[14] |
Michels M, Wijnsma KL, Kurvers RAJ, et al. Long-term follow-up including extensive complement analysis of a pediatric C3 glomerulopathy cohort[J]. Pediatr Nephrol, 2022, 37(3): 601-612.
doi: 10.1007/s00467-021-05221-6 |
[15] |
Günay N, Dursun İ, Gökçe İ, et al. Complement gene mutations in children with C3 glomerulopathy: do they affect the response to mycophenolate mofetil?[J]. Pediatr Nephrol, 2024, 39(5): 1435-1446.
doi: 10.1007/s00467-023-06231-2 |
[16] |
Caravaca-Fontán F, Lucientes L, Cavero T, et al. Update on C3 glomerulopathy: a complement-mediated disease[J]. Nephron, 2020, 144(6): 272-280.
doi: 10.1159/000507254 |
[17] |
Chauvet S, Hauer JJ, Petitprez F, et al. Results from a nationwide retrospective cohort measure the impact of C3 and soluble C5b-9 levels on kidney outcomes in C3 glomerulopathy[J]. Kidney Int, 2022, 102(4): 904-916.
doi: 10.1016/j.kint.2022.05.027 pmid: 35752323 |
[18] |
Pinarbasi AS, Dursun I, Poyrazoglu MH, et al. Evaluation of the children with C3 glomerulopathy[J]. Saudi J Kidney Dis Transpl, 2020, 31(1): 79-89.
doi: 10.4103/1319-2442.279964 pmid: 32129200 |
[19] |
Zotta F, Diomedi-Camassei F, Gargiulo A, et al. Successful treatment with avacopan (CCX168) in a pediatric patient with C3 glomerulonephritis[J]. Pediatr Nephrol, 2023, 38(12): 4197-4201.
doi: 10.1007/s00467-023-06035-4 pmid: 37306717 |
[20] |
Goodship TH, Cook HT, Fakhouri F, et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference[J]. Kidney Int, 2017, 91(3): 539-551.
doi: S0085-2538(16)30604-4 pmid: 27989322 |
[21] |
Mazzariol M, Manenti L, Vaglio A. The complement system in antineutrophil cytoplasmic antibody-associated vasculitis: pathogenic player and therapeutic target[J]. Curr Opin Rheumatol, 2023, 35(1): 31-36.
doi: 10.1097/BOR.0000000000000914 |
[22] |
Moiseev S, Lee JM, Zykova A, et al. The alternative complement pathway in ANCA-associated vasculitis: further evidence and a meta-analysis[J]. Clin Exp Immunol, 2020, 202(3): 394-402.
doi: 10.1111/cei.13498 |
[23] | Zhang P, Yan SJ, Hu J, et al. EXPRESS: Clinical outcomes and clinico-pathological correlations in children with MPO-ANCA-associated glomerulonephritis showing renal arteritis[J]. J Investig Med, 2024: 10815589241248073. |
[24] |
Johansson L, Berglin E, Eriksson O, et al. Complement activation prior to symptom onset in myeloperoxidase ANCA-associated vasculitis but not proteinase 3 ANCA associated vasculitis - A Swedish biobank study[J]. Scand J Rheumatol, 2022, 51(3): 214-219.
doi: 10.1080/03009742.2021.1989814 pmid: 35048784 |
[25] |
García L, Pena CE, Maldonado R, et al. Increased renal damage in hypocomplementemic patients with ANCA-associated vasculitis: retrospective cohort study[J]. Clin Rheumatol, 2019, 38(10): 2819-2824.
doi: 10.1007/s10067-019-04636-9 pmid: 31222573 |
[26] |
Antovic A, Mobarrez F, Manojlovic M, et al. Microparticles expressing myeloperoxidase and complement C3a and C5a as markers of renal involvement in antineutrophil cytoplasmic antibody-associated vasculitis[J]. J Rheumatol, 2020, 47(5): 714-721.
doi: 10.3899/jrheum.181347 pmid: 31371653 |
[27] |
Turgeon D, Bakowsky V, Baldwin C, et al. CanVasc consensus recommendations for the use of avacopan in antineutrophil cytoplasm antibody-associated vasculitis: 2022 addendum[J]. Rheumatology (Oxford), 2023, 62(8): 2646-2651.
doi: 10.1093/rheumatology/kead087 |
[28] |
Jayne DRW, Merkel PA, Schall TJ, et al. Avacopan for the treatment of ANCA-associated vasculitis[J]. N Engl J Med, 2021, 384(7): 599-609.
doi: 10.1056/NEJMoa2023386 |
[29] |
Zhang P, Yang X, Fang X, et al. Anti-C1q antibodies in lupus nephritis children with glomerular microthrombosis[J]. Nephrology (Carlton), 2023, 28(9): 485-494.
doi: 10.1111/nep.v28.9 |
[30] | Ye B, Chen B, Guo C, et al. C5a-C5aR1 axis controls mitochondrial fission to promote podocyte injury in lupus nephritis[J]. Mol Ther, 2024: S1525-0016(24)00144-8. |
[31] |
Chen K, Deng Y, Shang S, et al. Complement factor B inhibitor LNP023 improves lupus nephritis in MRL/lpr mice[J]. Biomed Pharmacother, 2022, 153: 113433.
doi: 10.1016/j.biopha.2022.113433 |
[32] |
Wright RD, Bannerman F, Beresford MW, et al. A systematic review of the role of eculizumab in systemic lupus erythematosus-associated thrombotic micro-angiopathy[J]. BMC Nephrol, 2020, 21(1): 245.
doi: 10.1186/s12882-020-01888-5 |
[33] |
Al Hussain T, Hussein MH, Al Mana H, et al. Patho-physiology of IgA nephropathy[J]. Adv Anat Pathol, 2017, 24(1): 56-62.
pmid: 27941542 |
[34] |
Barratt J, Lafayette RA, Zhang H, et al. IgA nephropathy: the lectin pathway and implications for targeted therapy[J]. Kidney Int, 2023, 104(2): 254-264.
doi: 10.1016/j.kint.2023.04.029 pmid: 37263354 |
[35] |
Mizerska-Wasiak M, Such-Gruchot A, Cichoń-Kawa K, et al. The role of complement component C3 activation in the clinical presentation and prognosis of IgA nephropathy-A National Study in Children[J]. J Clin Med, 2021, 10(19):4405.
doi: 10.3390/jcm10194405 |
[36] |
Kistler AD, Salant DJ. Complement activation and effector pathways in membranous nephropathy[J]. Kidney Int, 2024, 105(3): 473-483.
doi: 10.1016/j.kint.2023.10.035 |
[37] |
Gao S, Cui Z, Zhao MH. Complement C3a and C3a receptor activation mediates podocyte injuries in the mechanism of primary membranous nephropathy[J]. J Am Soc Nephrol, 2022, 33(9): 1742-1756.
doi: 10.1681/ASN.2021101384 pmid: 35777783 |
[38] |
Haddad G, Lorenzen JM, Ma H, et al. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy[J]. J Clin Invest, 2021, 131(5):e140453.
doi: 10.1172/JCI140453 |
[39] |
Seifert L, Zahner G, Meyer-Schwesinger C, et al. The classical pathway triggers pathogenic complement activation in membranous nephropathy[J]. Nat Commun, 2023, 14(1): 473.
doi: 10.1038/s41467-023-36068-0 pmid: 36709213 |
[40] | Zhang Q, Bin S, Budge K, et al. C3aR-initiated signaling is a critical mechanism of podocyte injury in membranous nephropathy[J]. JCI Insight, 2024, 9(4): e172976. |
[41] |
Zheng JM, Ren XG, Jiang ZH, et al. Lectin-induced renal local complement activation is involved in tubular interstitial injury in diabetic nephropathy[J]. Clin Chim Acta, 2018, 482: 65-73.
doi: 10.1016/j.cca.2018.03.033 |
[42] |
Flyvbjerg A. The role of the complement system in diabetic nephropathy[J]. Nat Rev Nephrol, 2017, 13(5): 311-318.
doi: 10.1038/nrneph.2017.31 pmid: 28262777 |
[43] | Pesce F, Stea ED, Rossini M, et al. Glomerulonephritis in AKI: from pathogenesis to therapeutic intervention[J]. Front Med (Lausanne), 2020, 7: 582272. |
[44] | Huang J, Cui Z, Gu QH, et al. Complement activation profile of patients with primary focal segmental glomerulosclerosis[J]. PLoS One, 2020, 15(6): e0234934. |
[45] |
Wang C, Wang Z, Zhang W. The potential role of complement alternative pathway activation in hypertensive renal damage[J]. Exp Biol Med (Maywood), 2022, 247(9): 797-804.
doi: 10.1177/15353702221091986 |
[46] |
Nithagon P, Cortazar F, Shah SI, et al. Eculizumab and complement activation in anti-glomerular basement membrane disease[J]. Kidney Int Rep, 2021, 6(10): 2713-2717.
doi: 10.1016/j.ekir.2021.07.001 pmid: 34622110 |
[47] |
Golshayan D, Schwotzer N, Fakhouri F, et al. Targeting the complement pathway in kidney transplantation[J]. J Am Soc Nephrol, 2023, 34(11): 1776-1792.
doi: 10.1681/ASN.0000000000000192 pmid: 37439664 |
[48] |
Santarsiero D, Aiello S. The complement system in kidney transplantation[J]. Cells, 2023, 12(5):791.
doi: 10.3390/cells12050791 |
[49] |
Vonbrunn E, Büttner-Herold M, Amann K, et al. Complement inhibition in kidney transplantation: where are we now?[J]. BioDrugs, 2023, 37(1): 5-19.
doi: 10.1007/s40259-022-00567-1 |
[50] | Rovin BH, Adler SG, Barratt J, et al. KDIGO 2021 clinical practice guideline for the management of glomerular diseases[J]. Kidney International, 2021, 100(4): S1-S276. |
[51] |
Rosenblad T, Rebetz J, Johansson M, et al. Eculizumab treatment for rescue of renal function in IgA nephropathy[J]. Pediatr Nephrol, 2014, 29(11): 2225-2228.
doi: 10.1007/s00467-014-2863-y pmid: 24924752 |
[52] |
McNamara LA, Topaz N, Wang X, et al. High risk for invasive meningococcal disease among patients receiving eculizumab (Soliris) despite receipt of meningococcal vaccine[J]. MMWR Morb Mortal Wkly Rep, 2017, 66(27): 734-737.
doi: 10.15585/mmwr.mm6627e1 |
[53] |
Loirat C, Fakhouri F, Ariceta G, et al. An international consensus approach to the management of atypical hemolytic uremic syndrome in children[J]. Pediatr Nephrol, 2016, 31(1): 15-39.
doi: 10.1007/s00467-015-3076-8 pmid: 25859752 |
[54] |
Antonucci L, Thurman JM, Vivarelli M. Complement inhibitors in pediatric kidney diseases: new therapeutic opportunities[J]. Pediatr Nephrol, 2024, 39(5): 1387-1404.
doi: 10.1007/s00467-023-06120-8 |
[55] |
Rondeau E, Scully M, Ariceta G, et al. The long-acting C5 inhibitor, Ravulizumab, is effective and safe in adult patients with atypical hemolytic uremic syndrome naïve to complement inhibitor treatment[J]. Kidney Int, 2020, 97(6): 1287-1296.
doi: S0085-2538(20)30152-6 pmid: 32299680 |
[56] |
Lee A. Avacopan: first approval[J]. Drugs, 2022, 82(1): 79-85.
doi: 10.1007/s40265-021-01643-6 |
[57] |
Schaefer F, Ardissino G, Ariceta G, et al. Clinical and genetic predictors of atypical hemolytic uremic syndrome phenotype and outcome[J]. Kidney Int, 2018, 94(2): 408-418.
doi: S0085-2538(18)30243-6 pmid: 29907460 |
[58] | Lapeyraque AL, Bitzan M, Al-Dakkak I, et al. Clinical Characteristics and outcome of Canadian patients diagnosed with atypical hemolytic uremic syndrome[J]. Can J Kidney Health Dis, 2020, 7: 2054358119897229. |
[1] | 刘雪, 沈颖, 王明旭, 樊剑锋, 孙嫱. 肾移植供肾分配政策变化对儿童维持性血液透析血管通路选择影响[J]. 临床儿科杂志, 2023, 41(12): 919-924. |
[2] | 张沛, 高春林, 夏正坤. KDIGO 2021慢性肾脏病儿童血压管理临床实践指南解读[J]. 临床儿科杂志, 2022, 40(6): 469-474. |
[3] | 匡仟卉柠, 高春林, 朱虹, 杨晓, 彭映潮, 夏正坤. 不同肾小球滤过率估算方程在15~18岁慢性肾脏病儿童中应用比较[J]. 临床儿科杂志, 2022, 40(12): 905-911. |
[4] | 何萍, 沈佳, 徐丹, 王紫燕. 核周型抗中性粒细胞胞浆抗体对儿童系统性红斑狼疮的临床意义[J]. 临床儿科杂志, 2022, 40(10): 739-744. |
[5] | 冯仕品,王莉,刘喜,等. 1002例慢性肾脏病患儿临床及病理分析[J]. 临床儿科杂志, 2021, 39(2): 87-. |
[6] | 应蓓,李宇红,邵晓珊,等. 紫癜性肾炎患儿动态血压与临床指标及病理的相关性[J]. 临床儿科杂志, 2021, 39(12): 895-. |
[7] | 孙晓朋,林毅,聂娜娜,等. PAX2 基因变异致慢性肾脏病2 例报告并文献复习[J]. 临床儿科杂志, 2021, 39(12): 905-. |
[8] | 符庆瑛,刘扬,汪卫华,等. IgA 肾病患儿感染与血压及免疫指标的关联性[J]. 临床儿科杂志, 2020, 38(6): 410-. |
[9] | 孙辉, 薛颖, 黄锋, 吴海瑛, 谢蓉蓉, 王凤云, 陈秀丽, 陈婷, 陈临琪 . 肾小球高滤过对儿童 1 型糖尿病早期肾脏损害评估的临床意义#br#[J]. 临床儿科杂志, 2018, 36(8): 575-. |
[10] | 赵旸. 儿童难治复发急性淋巴细胞白血病的新治疗策略#br#[J]. 临床儿科杂志, 2018, 36(8): 639-. |
[11] | 肖慧捷,徐可,丁洁. 补体在儿童免疫和/ 或炎症性肾脏疾病中的新认识[J]. 临床儿科杂志, 2015, 33(6): 504-. |
[12] | 闫慧,刘兰波,莫茜. Notch1 的异常激活与T 细胞型急性淋巴细胞白血病[J]. 临床儿科杂志, 2015, 33(5): 483-. |
[13] | 张宏博,黄建萍. 毛细血管内增生性肾炎转变为膜增生性肾炎1例报告#br#[J]. 临床儿科杂志, 2015, 33(3): 247-. |
|