[1] |
Jacquemin E. Progressive familial intrahepatic cholestasis[J]. Clin Res Hepatol Gastroenterol, 2012, 36 Suppl 1: S26-S35.
|
[2] |
Amirneni S, Haep N, Gad MA, et al. Molecular overview of progressive familial intrahepatic cholestasis[J]. World J Gastroenterol, 2020, 26(47): 7470-7484.
|
[3] |
Ünlüsoy Aksu A, Das S K, Nelson-Williams C, et al. Recessive mutations in KIF12 cause high gamma-glutamyltransferase cholestasis[J]. Hepatol Commun, 2019, 3(4): 471-477.
doi: 10.1002/hep4.1320
pmid: 30976738
|
[4] |
Maddirevula S, Alhebbi H, Alqahtani A, et al. Identification of novel loci for pediatric cholestatic liver disease defined by KIF12, PPM1F, USP53, LSR, and WDR83OS pathogenic variants[J]. Genet Med, 2019, 21(5): 1164-1172.
doi: 10.1038/s41436-018-0288-x
pmid: 30250217
|
[5] |
Sambrotta M, Strautnieks S, Papouli E, et al. Mutations in TJP2 cause progressive cholestatic liver disease[J]. Nat Genet, 2014, 46(4): 326-328.
doi: 10.1038/ng.2918
pmid: 24614073
|
[6] |
Gomez-Ospina N, Potter C J, Xiao R, et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis[J]. Nat Commun, 2016, 7: 10713.
doi: 10.1038/ncomms10713
pmid: 26888176
|
[7] |
Bull LN, Ellmers R, Foskett P, et al. Cholestasis due to USP53 Deficiency[J]. J Pediatr Gastroenterol Nutr, 2021, 72(5): 667-673.
|
[8] |
Mandato C, Siano M A, Nazzaro L, et al. A ZFYVE19 gene mutation associated with neonatal cholestasis and cilia dysfunction: case report with a novel pathogenic variant[J]. Orphanet J Rare Dis, 2021, 16(1): 179.
|
[9] |
Aldrian D, Vogel GF, Frey TK, et al. Congenital diarrhea and cholestatic liver disease: phenotypic spectrum associated with MYO5B mutations[J]. J Clin Med, 2021, 10(3): 481.
|
[10] |
Pan Q, Luo G, Qu J, et al. A homozygous R148W mutation in semaphorin 7A causes progressive familial intrahepatic cholestasis[J]. EMBO Mol Med, 2021, 13(11): e14563.
|
[11] |
Qiu YL, Liu T, Abuduxikuer K, et al. Novel missense mutation in VPS33B is associated with isolated low gamma-glutamyltransferase cholestasis: attenuated, incomplete phenotype of arthrogryposis, renal dysfunction, and cholestasis syndrome[J]. Hum Mutat, 2019, 40(12): 2247-2257.
|
[12] |
Gao E, Cheema H, Waheed N, et al. Organic solute transporter alpha deficiency: a disorder with cholestasis, liver fibrosis, and congenital diarrhea[J]. Hepatology, 2020, 71(5): 1879-1882.
doi: 10.1002/hep.31087
pmid: 31863603
|
[13] |
Stalke A, Sgodda M, Cantz T, et al. KIF12 variants and disturbed hepatocyte polarity in children with a phenotypic spectrum of cholestatic liver disease[J]. J Pediatr, 2022, 240: 284-291.
|
[14] |
Benoit M, Hunter B, Allingham J S, et al. New insights into the mechanochemical coupling mechanism of kinesin-microtubule complexes from their high-resolution structures[J]. Biochem Soc Trans, 2023, 51(4): 1505-1520.
|
[15] |
Zheng Y, Guo H, Chen L, et al. Diagnostic yield and novel candidate genes by next generation sequencing in 166 children with intrahepatic cholestasis[J]. Hepatol Int, 2024, 18(2): 661-672.
|
[16] |
Waheed N, Waris R, Naseer M, et al. Clinical exome sequencing reveals a novel pathogenic variant in KIF12 underlying cholestasis with highly variable phenotypes[J]. Clin Genet, 2024, 105(1): 106-108.
|
[17] |
Samanta A, Sarma MS, Srivastava A, et al. Cholestatic liver disease in a child with KIF12 mutation[J]. Indian J Pediatr, 2024, 91(7): 733-736.
|
[18] |
Mrug M, Zhou J, Yang C, et al. Genetic and informatic analyses implicate Kif12 as a candidate gene within the Mpkd2 locus that modulates renal cystic disease severity in the Cys1cpk mouse[J]. PLoS One, 2015, 10(8): e0135678.
|
[19] |
He M, Agbu S, Anderson KV. Microtubule motors drive Hedgehog signaling in primary cilia[J]. Trends Cell Biol, 2017, 27(2): 110-125.
doi: S0962-8924(16)30152-0
pmid: 27765513
|
[20] |
Veljačić Visković D, Lozić M, Vukoja M, et al. Spatio-temporal expression pattern of CAKUT candidate genes DLG1 and KIF12 during human kidney development[J]. Biomolecules, 2023, 13(2): 340.
|