[1] |
Melvin JJ. Pompe's disease[J]. Arch Neurol, 2000, 57(1): 134-135.
|
[2] |
傅立军, 窦薇, 周爱卿, 等. 糖原累积病Ⅱ型的临床分析和基因学检测[J]. 临床儿科杂志, 2006, 24(12): 962-965.
|
[3] |
傅立军, 陈树宝, 邱文娟, 等. 婴儿型糖原贮积病Ⅱ型的临床特点及其转归[J]. 中华医学杂志, 2013, 93(20): 1567-1570.
|
[4] |
Fu L, Qiu W, Yu Y, et al. Clinical and molecular genetic study of infantile-onset Pompe disease in Chinese patients: identification of 6 novel mutations[J]. Gene, 2014, 535(1): 53-59.
doi: 10.1016/j.gene.2013.10.066
pmid: 24269976
|
[5] |
Lim JA, Li L, Raben N. Pompe disease: from patho-physiology to therapy and back again[J]. Front Aging Neurosci, 2014, 6: 177.
|
[6] |
Niño MY, Wijgerde M, de Faria DOS, et al. Enzymatic diagnosis of Pompe disease: lessons from 28 years of experience[J]. Eur J Hum Genet, 2021, 29(3): 434-446.
doi: 10.1038/s41431-020-00752-2
pmid: 33162552
|
[7] |
Ausems MG, Lochman P, van Diggelen OP, et al. A diagnostic protocol for adult-onset glycogen storage disease type Ⅱ[J]. Neurology, 1999, 52(4): 851-853.
pmid: 10078739
|
[8] |
邱正庆, 罗小平, 傅君芬. 儿童糖原累积病Ⅱ型诊断及治疗中国专家共识[J]. 中华儿科杂志, 2021, 59(6): 439-445.
|
[9] |
Chen X, Liu T, Huang M, et al. Clinical and molecular characterization of infantile-onset Pompe disease in mainland Chinese patients: identification of two common mutations[J]. Genet Test Mol Biomarkers, 2017, 21(6): 391-396.
|
[10] |
Shigeto S, Katafuchi T, Okada Y, et al. Improved assay for differential diagnosis between Pompe disease and acid α-glucosidase pseudodeficiency on dried blood spots[J]. Mol Genet Metab, 2011, 103(1): 12-17.
doi: 10.1016/j.ymgme.2011.01.006
pmid: 21320792
|
[11] |
Oba-Shinjo SM, da Silva R, Andrade FG, et al. Pompe disease in a Brazilian series: clinical and molecular analyses with identification of nine new mutations[J]. J Neurol, 2009, 256(11): 1881-1890.
doi: 10.1007/s00415-009-5219-y
pmid: 19588081
|
[12] |
刘炼双, 傅立军, 缪艳, 等. 外周血涂片检查对婴儿型庞贝病筛查和诊断的应用价值[J]. 临床儿科杂志, 2019, 37(7): 503-506.
|
[13] |
Kishnani PS, Nicolino M, Voit T, et al. Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease[J]. J Pediatr, 2006, 149(1): 89-97.
|
[14] |
Chien YH, Lee NC, Chen CA, et al. Long-term prognosis of patients with infantile-onset Pompe disease diagnosed by newborn screening and treated since birth[J]. J Pediatr, 2015, 166(4): 985-991.
|
[15] |
Zhu D, Zhu J, Qiu W, et al. A multi-centre prospective study of the efficacy and safety of alglucosidase alfa in Chinese patients with infantile-onset pompe disease[J]. Front Pharmacol, 2022, 13: 903488.
|
[16] |
Dhillon S. Avalglucosidase alfa: first approval[J]. Drugs, 2021, 81(15): 1803-1809.
doi: 10.1007/s40265-021-01600-3
pmid: 34591286
|
[17] |
Diaz-Manera J, Kishnani PS, Kushlaf H, et al. Safety and efficacy of avalglucosidase alfa versus alglucosidase alfa in patients with late-onset Pompe disease (COMET): a phase 3, randomised, multicentre trial[J]. Lancet Neurol, 2021, 20(12): 1012-1026.
doi: 10.1016/S1474-4422(21)00241-6
pmid: 34800399
|
[18] |
Kishnani PS, Kronn D, Brassier A, et al. Safety and efficacy of avalglucosidase alfa in individuals with infantile-onset Pompe disease enrolled in the phase 2, open-label Mini-COMET study: The 6-month primary analysis report[J]. Genet Med, 2023, 25(2): 100328.
|
[19] |
Yang CF, Yang CC, Liao HC, et al. Very early treatment for infantile-onset Pompe disease contributes to better outcomes[J]. J Pediatr, 2016, 169: 174-180.
|
[20] |
Ronzitti G, Collaud F, Laforet P, et al. Progress and challenges of gene therapy for Pompe disease[J]. Ann Transl Med, 2019, 7(13): 287.
doi: 10.21037/atm.2019.04.67
pmid: 31392199
|
[21] |
Do HV, Khanna R, Gotschall R. Challenges in treating Pompe disease: an industry perspective[J]. Ann Transl Med, 2019, 7(13): 291.
doi: 10.21037/atm.2019.04.15
pmid: 31392203
|
[22] |
Bellotti AS, Andreoli L, Ronchi D, et al. Molecular approaches for the treatment of Pompe disease[J]. Mol Neurobiol, 2020, 57(2): 1259-1280.
doi: 10.1007/s12035-019-01820-5
pmid: 31713816
|
[23] |
Borie-Guichot M, Tran ML, Génisson Y, et al. Pharma-cological chaperone therapy for Pompe disease[J]. Molecules, 2021, 26(23): 7223.
|
[24] |
Fu L, Luo S, Cai S, et al. Identification of LAMP2 mutations in early-onset Danon disease with hypertrophic cardiomyopathy by targeted next-generation sequencing[J]. Am J Cardiol, 2016, 118(6): 888-894.
|
[25] |
Nishino I, Fu J, Tanji K, et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease)[J]. Nature, 2000, 406(6798): 906-910.
|
[26] |
Mattei MG, Matterson J, Chen JW, et al. Two human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2, are encoded by genes localized to chromosome 13q34 and chromosome Xq24-25, respectively[J]. J Biol Chem, 1990, 265(13): 7548-7551.
pmid: 2332441
|
[27] |
王吴婉, 朱园园, 吴炜, 等. Danon病临床特征分析[J]. 中华心血管杂志, 2023, 51(1): 51-57.
|
[28] |
D'Souza RS, Levandowski C, Slavov D, et al. Danon disease: clinical features, evaluation, and management[J]. Circ Heart Fail, 2014, 7(5): 843-849.
doi: 10.1161/CIRCHEARTFAILURE.114.001105
pmid: 25228319
|
[29] |
Sugie K, Yamamoto A, Murayama K, et al. Clinico-pathological features of genetically confirmed Danon disease[J]. Neurology, 2002, 58(12): 1773-1778.
doi: 10.1212/wnl.58.12.1773
pmid: 12084876
|
[30] |
Sugie K, Noguchi S, Kozuka Y, et al. Autophagic vacuoles with sarcolemmal features delineate Danon disease and related myopathies[J]. J Neuropathol Exp Neurol, 2005, 64(6): 513-522.
|
[31] |
Hong Kimberly N, Eshraghian Emily A, Arad M, et al. International consensus on differential diagnosis and management of patients with Danon disease: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2023, 82(16): 1628-1647.
doi: 10.1016/j.jacc.2023.08.014
pmid: 37821174
|
[32] |
Manso AM, Hashem SI, Nelson BC, et al. Systemic AAV9.LAMP2B injection reverses metabolic and physiologic multiorgan dysfunction in a murine model of Danon disease[J]. Sci Transl Med, 2020, 12(535) : eaax1744.
|
[33] |
Whitley JA, Cai H. Engineering extracellular vesicles to deliver CRISPR ribonucleoprotein for gene editing[J]. J Extracell Vesicles, 2023, 12(9): e12343.
|
[34] |
Fan Z, Wan LX, Jiang W, et al. Targeting autophagy with small-molecule activators for potential therapeutic purposes[J]. Eur J Med Chem, 2023, 260: 115722.
|
[35] |
Lopez-Sainz A, Dominguez F, Lopes LR, et al. Clinical features and natural history of PRKAG2 variant cardiac glycogenosis[J]. J Am Coll Cardiol, 2020, 76(2): 186-197.
doi: S0735-1097(20)35324-9
pmid: 32646569
|
[36] |
Murphy RT, Mogensen J, McGarry K, et al. Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome: natural history[J]. J Am Coll Cardiol, 2005, 45(6): 922-930.
doi: 10.1016/j.jacc.2004.11.053
pmid: 15766830
|
[37] |
Gollob MH, Green MS, Tang AS, et al. PRKAG2 cardiac syndrome: familial ventricular preexcitation, conduction system disease, and cardiac hypertrophy[J]. Curr Opin Cardiol, 2002, 17(3): 229-234.
doi: 10.1097/00001573-200205000-00004
pmid: 12015471
|
[38] |
Back Sternick E, de Almeida Araújo S, Ribeiro da Silva Camargos E, et al. Atrial pathology findings in a patient with PRKAG2 cardiomyopathy and persistent atrial fibrillation[J]. Circ Arrhythm Electrophysiol, 2016, 9(12) : e004455.
|
[39] |
Hu D, Hu D, Liu L, et al. Identification, clinical mani-festation and structural mechanisms of mutations in AMPK associated cardiac glycogen storage disease[J]. EBioMedicine, 2020, 54: 102723.
|
[40] |
Thevenon J, Laurent G, Ader F, et al. High prevalence of arrhythmic and myocardial complications in patients with cardiac glycogenosis due to PRKAG2 mutations[J]. Europace, 2017, 19(4): 651-659.
doi: 10.1093/europace/euw067
pmid: 28431061
|
[41] |
Daniel T, Carling D. Functional analysis of mutations in the gamma 2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-Parkinson-White syndrome[J]. J Biol Chem, 2002, 277(52): 51017-51024.
doi: 10.1074/jbc.M207093200
pmid: 12397075
|
[42] |
Porto AG, Brun F, Severini GM, et al. Clinical Spectrum of PRKAG2 Syndrome[J]. Circ Arrhythm Electrophysiol, 2016, 9(1): e003121.
|
[43] |
石璐, 王昆鹏, 侯小锋. PRKAG2心脏综合征发病机制及诊疗进展[J]. 中华心律失常学杂志, 2018, 22(3): 267-270.
|
[44] |
Xie C, Zhang YP, Song L, et al. Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome[J]. Cell Res, 2016, 26(10): 1099-1111.
doi: 10.1038/cr.2016.101
pmid: 27573176
|
[45] |
Zhan Y, Sun X, Li B, et al. Establishment of a PRKAG2 cardiac syndrome disease model and mechanism study using human induced pluripotent stem cells[J]. J Mol Cell Cardiol, 2018, 117: 49-61.
doi: S0022-2828(18)30041-5
pmid: 29452156
|
[46] |
Argiro A, Bui Q, Hong KN, et al. Applications of gene therapy in cardiomyopathies[J]. JACC Heart Fail, 2024, 12: 248-260.
|