Journal of Clinical Pediatrics ›› 2022, Vol. 40 ›› Issue (12): 912-918.doi: 10.12372/jcp.2022.22e0998
• Urinary System Disease • Previous Articles Next Articles
WAN Ling, CHEN Chaoying(), TU Juan, LI Huarong
Received:
2022-07-25
Online:
2022-12-15
Published:
2022-12-06
Contact:
CHEN Chaoying
E-mail:chenchaoying484@aliyun.com
WAN Ling, CHEN Chaoying, TU Juan, LI Huarong. Analysis of SLC5A2 gene variation in 11 children with primary renal glucosuria[J].Journal of Clinical Pediatrics, 2022, 40(12): 912-918.
"
病例 编号 | 性别 | 发病 年龄 | 家族史 | 起病表现 | 尿糖 | 核苷酸 改变 | 氨基酸 改变 | Het/ Hom | 父源/ 母源 | 是否 报道 | SIFT | Polyphen2 | Mutation Taster |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 男 | 6岁 | 无 | 无 | +++~++++ | c.655G>A | p.A219T | Het | ND | Y | D | PD | D |
2 | 男 | 13岁 | 无 | 无 | +~++ | c.1889_1891del | p.631del | Het | 父源 | N | NA | NA | NA |
3 | 女 | 2岁5月 | 父尿糖+ | 外耳手术 住院发现 | +++~++++ | c.1540C>T IVS1-16C>A | p.P514S 剪接变异 | Het | 母源 父源 | Y | T | PD | D |
N | NA | NA | NA | ||||||||||
4 | 男 | 2岁11月 | 父尿糖+ | 尿液黏稠 | +++~++++ | c.1229A>G c.1665+5G>C | p.Y410C 剪接变异 | Het | 父源 母源 | N | D | PD | D |
N | NA | NA | NA | ||||||||||
5 | 女 | 1岁6月 | 父尿糖+ | 尿频 | +++~++++ | c.482C>T c.1449+1G>C | p.S161F 剪接变异 | Het | 父源 母源 | N | D | PD | D |
Y | NA | NA | NA | ||||||||||
6 | 男 | 4岁 | 无 | 无 | ++++ | c.505G>A IVS1-16C>A | p.A169T 剪接变异 | Het | ND | N | T | PD | D |
Y | NA | NA | NA | ||||||||||
7 | 女 | 2岁2月 | 无 | 尿色浑浊 | ++++ | c.736C>T c.1093G>A | p.P246S p.A365T | Het | 父源 母源 | Y | T | PD | D |
N | D | PD | D | ||||||||||
8 | 女 | 2岁 | 无 | 尿急 | +++~++++ | c.1449+1G>C | 剪接变异 | Het | 母源 | Y | NA | NA | NA |
9 | 女 | 1岁7月 | 父尿糖+ | 无 | +++~++++ | c.824C>T c.1540C>T | p.P275L p.P514S | Het | 父源 母源 | N | D | PD | D |
Y | T | PD | D | ||||||||||
10 | 女 | 1天 | 母尿糖+ | 黄疸住 院发现 | ++++ | c.1413C>G c.934G>C | p.F471L p.A312P | Het | 父源 母源 | N | D | PD | D |
N | D | PD | D | ||||||||||
11 | 男 | 7岁9月 | 无 | 无 | +~++ | c.505G>A | p.A169T | Het | 母源 | N | T | PD | D |
"
核苷酸改变 | ACMG证据等级 | ACMG |
---|---|---|
c.655G>A | PS4_Supporting:常染色体显性疾病,极罕见变异,在1个具有相同表型的无亲缘关系患者中观察到该变异。 PM2-supporting: 千人数据库、EXAC数据库中正常对照人群中未发现的变异。 PP3: 多种统计方法预测出该变异会对基因或基因产物造成有害的影响(REVEL:0.77) | VUS |
c.1889_1891del | PM2-supporting: 千人数据库、EXAC数据库中正常对照人群中未发现的变异。 PM4_Supporting:非重复区框内插入/缺失或终止密码子丧失导致的蛋白质长度变化。 | VUS |
c.1540C>T | PS4_Moderate:常染色体显性疾病,极罕见变异,在最少3个具有相同表型的无亲缘关系患者中观察到该变异。 PM2-supporting: 千人数据库、EXAC数据库中低频变异。 | VUS |
IVS1-16C>A | PS4_Supporting:常染色体显性疾病,极罕见变异,在1个具有相同表型的无亲缘关系患者中观察到该变异。 PM2-supporting: 千人数据库、EXAC数据库中低频变异。 | VUS |
c.1229A>G | PM2-supporting: 千人数据库、EXAC数据库中正常对照人群中未发现的变异。 PP3: 多种统计方法预测出该变异会对基因或基因产物造成有害的影响(REVEL:0.83) | VUS |
c.1665+5G>C | PM2-supporting: 千人数据库、EXAC数据库中低频变异。 PP3: 多种统计方法预测出该变异会对基因或基因产物造成有害的影响(Ada Score=1; RF Score=0.962)。 | VUS |
c.482C>T | PP3: 多种统计方法预测出该变异会对基因或基因产物造成有害的影响(REVEL=0.923)。 | VUS |
c.1449+1G>C | PM2-supporting: 千人数据库、EXAC数据库中正常对照人群中未发现的变异。 PP3: 多种统计方法预测出该变异会对基因或基因产物造成有害的影响(Ada Score=1; RF Score=0.932)。 | VUS |
c.505G>A | PM2-supporting: 千人数据库、EXAC数据库中低频变异。 | VUS |
c.736C>T | PM2-supporting: 千人数据库、EXAC数据库中低频变异。 | VUS |
c.1093G>A | PM2-supporting: 千人数据库、EXAC数据库中低频变异。 PP3: 多种统计方法预测出该变异会对基因或基因产物造成有害的影响(REVEL=0.889)。 | VUS |
c.824C>T | PM2-supporting: 千人数据库、EXAC数据库中正常对照人群中未发现的变异。 PP3: 多种统计方法预测出该变异会对基因或基因产物造成有害的影响(REVEL=0.815)。 | VUS |
c.1413C> | PM2-supporting: 千人数据库、EXAC数据库中低频变异。 | VUS |
c.934G>C | PM2-supporting: 千人数据库、EXAC数据库中低频变异。 PP3: 多种统计方法预测出该变异会对基因或基因产物造成有害的影响(REVEL=0.847)。 | VUS |
[1] | Sada K, Hidaka S, Imaishi N, et al. Clinical and genetic analysis in a family with familial renal glucosuria: Identification of an N101K mutation in the sodium-glucose cotransporter 2 encoded by a solute carrier family 5 member 2 gene[J]. J Diabetes Investig. 2020, 11(3):573-577. |
[2] |
望赛, 刘雪梅, 赵向忠, 等. 中国家族性肾性糖尿SGLT2基因变异分析及肾葡萄糖阈值的测定[J]. 中华肾脏病杂志, 2018, 34(11): 816-821.
doi: 10.3760/cma.j.issn.1001-7097.2018.11.003 |
[3] | 付红波, 李楠, 裴育, 等. 钠-葡萄糖共转运蛋白2基因变异致原发性肾性糖尿一例并文献复习[J]. 中华糖尿病杂志, 2018, 10(2): 150-153. |
[4] | 余自华, 陈丽珠. 肾性糖尿的诊疗现状[J]. 中华实用儿科临床杂志, 2018, 33(17): 1286-1289. |
[5] |
Santer R, Calado J. Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target[J]. Clin J Am Soc Nephrol, 2010, 5(1): 133-141.
doi: 10.2215/CJN.04010609 |
[6] |
Perry RJ, Shulman GI. Sodium-glucose cotransporter-2 inhibitors: Understanding the mechanisms for therapeutic promise and persisting risks[J]. J Biol Chem, 2020, 295(42): 14379-14390.
doi: 10.1074/jbc.REV120.008387 |
[7] |
Djeddi D, Cauliez A, Oulebsir A, et al. Persistently high urine glucose levels caused by familial renal glycosuria[J]. Arch Pediatr, 2020, 27(7): 386-387.
doi: 10.1016/j.arcped.2020.07.002 pmid: 32807621 |
[8] |
Yu L, Wu M, Hou P, et al. SLC5A2 mutations, including two novel mutations, responsible for renal glucosuria in Chinese families[J]. BMC Nephrol, 2020, 21(1): 69.
doi: 10.1186/s12882-020-01725-9 |
[9] |
Zhao X, Cui L, Lang Y, et al. A recurrent deletion in the SLC5A2 gene including the intron 7 branch site responsible for familial renal glucosuria[J]. Sci Rep, 2016, 6: 33920.
doi: 10.1038/srep33920 |
[10] |
Santer R, Kinner M, Lassen CL, et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria[J]. J Am Soc Nephrol, 2003, 14(11): 2873-2882.
pmid: 14569097 |
[11] | Dorum S, Erdoğan H, Köksoy AY, et al. Clinical features of pediatric renal glucosuria cases due to SLC5A2 gene variants[J]. Pediatr Int, 2022, 64(1): e14948.. |
[12] |
Wang S, Wang Y, Wang J, et al. Six exonic variants in the SLC5A2 gene cause exon skipping in a minigene assay[J]. Front Genet, 2020, 11: 585064.
doi: 10.3389/fgene.2020.585064 |
[13] |
Santer R, Calado J. Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target[J]. Clin J Am Soc Nephrol, 2010, 5(1): 133-141.
doi: 10.2215/CJN.04010609 |
[14] |
王晓慧, 赵向忠, 李春梅, 等. 中国家族性肾性糖尿SGLT2基因变异分析及表型和基因型相关性研究[J]. 中华肾脏病杂志, 2016, 32(1): 1-8.
doi: 10.3760/cma.j.issn.1001-7097.2016.01.001 |
[15] |
Wang S, Zhao X, Zhang R, et al. Identification of ten novel SLC5A2 mutations and determination of the renal threshold for glucose excretion in Chinese patients with familial renal glucosuria[J]. Clin Chim Acta, 2019, 490: 102-106.
doi: S0009-8981(18)30654-5 pmid: 30593819 |
[16] |
Calado J, Loeffler J, Sakallioglu O, et al. Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-wasting[J]. Kidney Int, 2006, 69(5): 852-855.
pmid: 16518345 |
[17] |
Xiong HY, Alipanahi B, Lee LJ, et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease[J]. Science, 2015, 347(6218): 1254806.
doi: 10.1126/science.1254806 |
[18] |
Lee H, Han KH, Park HW, et al. Familial renal glucosuria: a clinicogenetic study of 23 additional cases[J]. Pediatr Nephrol. 2012, 27(7): 1091-1095.
doi: 10.1007/s00467-012-2109-9 pmid: 22314875 |
[19] |
Wang X, Yu M, Wang T, et al. Genetic analysis and literature review of Chinese patients with familial renal glucosuria: Identification of a novel SLC5A2 mutation[J]. Clin Chim Acta, 2017, 469: 105-110.
doi: 10.1016/j.cca.2017.03.027 |
[20] |
Gu X, Chen M, Xu Y, et al. Acquired renal glucosuria in an undifferentiated connective tissue disease patient with a SLC5A2 heterozygous mutation: A case report[J]. Medicine (Baltimore), 2018, 97(50): e13664.
doi: 10.1097/MD.0000000000013664 |
[21] | Li S, Yang Y, Huang L, et al. A novel compound heterozygous mutation in SLC5A2 contributes to familial renal glucosuria in a Chinese family, and a review of the relevant literature[J]. Mol Med Rep. 2019, 19(5): 4364-4376. |
[22] |
Yu L, Lv JC, Zhou XJ, et al. Abnormal expression and dysfunction of novel SGLT2 mutations identified in familial renal glucosuria patients[J]. Hum Genet, 2011, 129(3): 335-344.
doi: 10.1007/s00439-010-0927-z |
[23] |
Calado J, Sznajer Y, Metzger D, et al. Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion[J]. Nephrol Dial Transplant, 2008, 23(12): 3874-3879.
doi: 10.1093/ndt/gfn386 |
[24] |
Santer R, Kinner M, Lassen CL, et al. Molecular analysis of the SGLT2 gene in patients with renal glucosuria[J]. J Am Soc Nephrol, 2003, 14(11): 2873-2882.
pmid: 14569097 |
[25] |
Lee H, Han KH, Park HW, et al. Familial renal glucosuria: a clinicogenetic study of 23 additional cases[J]. Pediatr Nephrol, 2012, 27(7): 1091-1095.
doi: 10.1007/s00467-012-2109-9 pmid: 22314875 |
[26] |
Toka HR, Yang J, Zera CA, et al. Pregnancy-associated polyuria in familial renal glycosuria[J]. Am J Kidney Dis, 2013, 62(6): 1160-1164.
doi: 10.1053/j.ajkd.2013.05.018 pmid: 23871407 |
[27] |
Leslie BR, Gerwin LE, Taylor SI. Sodium-glucose cotransporter-2 inhibitors: lack of a complete history delays diagnosis[J]. Ann Intern Med, 2019, 171(6): 421-426.
doi: 10.7326/M19-1463 pmid: 31525753 |
[1] | YANG Zhibo, LIU Li. Application of gene sequencing technology in precise diagnosis and mechanism research of monogenic lupus [J]. Journal of Clinical Pediatrics, 2023, 41(9): 715-720. |
[2] | TANG Yanan, YE Xiantao, GU Xuefan, YU Yongguo, XIAO Bing, SUN Yu. Clinical characteristics and genetic analysis in Chinese patients with Menke-Hennekam syndrome [J]. Journal of Clinical Pediatrics, 2023, 41(8): 613-617. |
[3] | WANG Hongxia, PAN Xiang, LU Jun. Report a case of α-ketoadipic aciduria caused by compound heterozygous variant of DHTKD1 gene [J]. Journal of Clinical Pediatrics, 2023, 41(8): 624-628. |
[4] | ZHANG Wenyan, YAO Ziming, ZHANG Xuejun, ZHANG Yaodong, WANG Lingfei, HU Xuyun, HAO Chanjuan. Genetic characteristics of TRPV4-related congenital skeletal disorder [J]. Journal of Clinical Pediatrics, 2023, 41(7): 530-536. |
[5] | XIANG Chao, ZHANG Rong, KANG Lan, LEI Xiaoping, LIU Xingqing, DONG Wenbin. Association of coefficient of glycemic variation and SNAPPE-Ⅱ with prognosis in critically ill neonates [J]. Journal of Clinical Pediatrics, 2023, 41(6): 430-435. |
[6] | WAN Ruiping, HUANG Xiaofei, YE Xingguang, WU Yanling, DAI Jiemin, LIU Zhigang. Clinical characteristics and genetic analysis of SETBP1 haploinsufficiency disorder [J]. Journal of Clinical Pediatrics, 2023, 41(6): 450-454. |
[7] | XU Xiao, ZHAO Lin, GONG Fangqi. Role of vascular smooth muscle cell phenotypic switching in cardiovascular diseases in children [J]. Journal of Clinical Pediatrics, 2023, 41(5): 394-400. |
[8] | SUN Jinbo, YAO Bei, HAN Tongyan, TONG Xiaomei, LI Zailing. Study on drug resistance of six carbapenem-resistant Enterobacter xiangfangensis strains carrying blaIMP-4 gene [J]. Journal of Clinical Pediatrics, 2023, 41(4): 284-288. |
[9] | ZHONG Yaoyao, ZHANG Liqin, DU Wei, LU Weibing, LIU Tingting. Gene mutation analysis and long-term follow-up of 6-pyruvoyltetrahydropterin synthase deficiency in Qingdao [J]. Journal of Clinical Pediatrics, 2023, 41(2): 103-107. |
[10] | HU Xuyun, HAO Chanjuan. Genetic diagnosis and management of TRPV4 disorders [J]. Journal of Clinical Pediatrics, 2023, 41(2): 86-91. |
[11] | HU Haili, LI Weidong, WANG Yan, SONG Wangsheng, MA Qingqing. Neonatal screening and gene variation analysis of primary carnitine deficiency in Hefei City [J]. Journal of Clinical Pediatrics, 2023, 41(10): 680-684. |
[12] | ZHANG Wanqiao, YAN Lei, ZHU Lina, MA Xiuwei. Metabolic and genetic analysis of abnormal 3-hydroxyisovalerylcarnitine in children from northern China [J]. Journal of Clinical Pediatrics, 2023, 41(10): 692-696. |
[13] | ZHAO Jinhua, TANG Jihong, HUANG Jing, XIAO Xiao, ZHANG Bingbing, XING Yujiao, SHI Xiaoyan. Progressive myoclonic epilepsy caused by SEMA6B gene variations: a case report [J]. Journal of Clinical Pediatrics, 2022, 40(9): 705-709. |
[14] | DING Yingxue. Phenotypic evolution of bronchopulmonary dysplasia in premature infants [J]. Journal of Clinical Pediatrics, 2022, 40(6): 407-412. |
[15] | WANG Lili, WU Haiying, XIE Rongrong, WANG Fengyun, CHEN Ting, CHEN Xiuli, SUN Hui, WANG Xiaoyan, ZHANG Dandan, CHEN Linqi. Analysis of genetic test results in 186 cases with short stature [J]. Journal of Clinical Pediatrics, 2022, 40(5): 349-354. |
|