Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (8): 634-640.doi: 10.12372/jcp.2023.22e0820
• Continuing Medical Education • Previous Articles
WANG Yanfei, TAN Linhua
Received:
2022-06-13
Online:
2023-08-15
Published:
2023-08-10
WANG Yanfei, TAN Linhua. Research progress on the role of intestinal flora in sepsis[J].Journal of Clinical Pediatrics, 2023, 41(8): 634-640.
[1] |
Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, et al. The global burden of paediatric and neonatal sepsis: a systematic review[J]. Lancet Respir Med, 2018, 6(3): 223-230.
doi: 10.1016/S2213-2600(18)30063-8 pmid: 29508706 |
[2] |
Chen P, Billiar T. Gut microbiota and multiple organ dysfunction syndrome (MODS)[J]. Adv Exp Med Biol, 2020, 1238: 195-202.
doi: 10.1007/978-981-15-2385-4_11 pmid: 32323186 |
[3] |
Brussow H. Problems with the concept of gut microbiota dysbiosis[J]. Microb Biotechnol, 2020, 13(2): 423-434.
doi: 10.1111/1751-7915.13479 pmid: 31448542 |
[4] |
Adelman MW, Woodworth MH, Langelier C, et al. The gut microbiome's role in the development, maintenance, and outcomes of sepsis[J]. Crit Care, 2020, 24(1): 278.
doi: 10.1186/s13054-020-02989-1 |
[5] |
Liu W, Cheng M, Li J, et al. Classification of the gut microbiota of patients in intensive care units during development of sepsis and septic shock[J]. Genomics Proteomics Bioinformatics, 2020, 18(6): 696-707.
doi: 10.1016/j.gpb.2020.06.011 |
[6] |
Huang M, Cai S, Su J. The Pathogenesis of Sepsis and Potential Therapeutic Targets[J]. Int J Mol Sci, 2019, 20(21) :5376.
doi: 10.3390/ijms20215376 |
[7] |
Woo V, Alenghat T. Epigenetic regulation by gut microbiota[J]. Gut Microbes, 2022, 14(1): 2022407.
doi: 10.1080/19490976.2021.2022407 |
[8] |
Ke X, You K, Pichaud M, et al. Gut bacterial metabolites modulate endoplasmic reticulum stress[J]. Genome Biol, 2021, 22(1): 292.
doi: 10.1186/s13059-021-02496-8 pmid: 34654459 |
[9] |
Riazi-Rad F, Behrouzi A, Mazaheri H, et al. Impact of gut microbiota on immune system[J]. Acta Microbiol Immunol Hung, 2021. doi: 10.1556/030.2021.01532.
doi: 10.1556/030.2021.01532 |
[10] |
Fay KT, Klingensmith NJ, Chen CW, et al. The gut microbiome alters immunophenotype and survival from sepsis[J]. FASEB J, 2019, 33(10): 11258-11269.
doi: 10.1096/fj.201802188R pmid: 31306584 |
[11] |
Chen L, Li H, Chen Y, et al. Probiotic lactobacillus rhamnosus GG reduces mortality of septic mice by modulating gut microbiota composition and metabolic profiles[J]. Nutrition, 2020, 78: 110863.
doi: 10.1016/j.nut.2020.110863 |
[12] |
Morgan RL, Preidis GA, Kashyap PC, et al. Probiotics reduce mortality and morbidity in preterm, low-birth-weight infants: a systematic review and network meta-analysis of randomized trials[J]. Gastroenterology, 2020, 159(2): 467-480.
doi: S0016-5085(20)34849-6 pmid: 32592699 |
[13] |
Suez J, Zmora N, Segal E, et al. The pros, cons, and many unknowns of probiotics[J]. Nat Med, 2019, 25(5): 716-729.
doi: 10.1038/s41591-019-0439-x pmid: 31061539 |
[14] |
Sotoudegan F, Daniali M, Hassani S, et al. Reappraisal of probiotics' safety in human[J]. Food Chem Toxicol, 2019, 129: 22-29.
doi: S0278-6915(19)30231-5 pmid: 31009735 |
[15] |
Salminen S, Collado MC, Endo A, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(9): 649-667.
doi: 10.1038/s41575-021-00440-6 pmid: 33948025 |
[16] |
Mantziari A, Salminen S, Szajewska H, et al. Postbiotics against pathogens commonly involved in pediatric infectious diseases[J]. Microorganisms, 2020, 8(10): 1510.
doi: 10.3390/microorganisms8101510 |
[17] |
Wittekamp BHJ, Oostdijk EAN, Cuthbertson BH, et al. Selective decontamination of the digestive tract (SDD) in critically ill patients: a narrative review[J]. Intensive Care Med, 2020, 46(2): 343-349.
doi: 10.1007/s00134-019-05883-9 pmid: 31820032 |
[18] |
Buitinck SH, Jansen R, Bosman RJ, et al. Eradication of resistant and susceptible aerobic gram-negative bacteria from the digestive tract in critically ill patients; an observational cohort study[J]. Front Microbiol, 2021, 12: 779805.
doi: 10.3389/fmicb.2021.779805 |
[19] |
Sanchez-Ramirez C, Hipola-Escalada S, Cabrera-Santana M, et al. Long-term use of selective digestive decontamination in an ICU highly endemic for bacterial resistance[J]. Critical Care, 2018, 22(1):141.
doi: 10.1186/s13054-018-2057-2 |
[20] |
Buitinck S, Jansen R, Rijkenberg S, et al. The ecological effects of selective decontamination of the digestive tract (SDD) on antimicrobial resistance: a 21-year longitudinal single-centre study[J]. Crit Care, 2019, 23(1): 208.
doi: 10.1186/s13054-019-2480-z |
[21] |
Petros A, Silvestri L, Booth R, et al. Selective decon-tamination of the digestive tract in critically ill children: systematic review and meta-analysis[J]. Pediatr Crit Care Med, 2013, 14(1): 89-97.
doi: 10.1097/PCC.0b013e3182417871 |
[22] |
Keskey R, Cone JT, DeFazio JR, et al. The use of fecal microbiota transplant in sepsis[J]. Transl Res, 2020, 226: 12-25.
doi: 10.1016/j.trsl.2020.07.002 pmid: 32649987 |
[23] |
Zhong S, Zeng J, Deng Z, et al. Fecal microbiota transplantation for refractory diarrhea in immuno-compromised diseases: a pediatric case report[J]. Ital J Pediatr, 2019, 45(1): 116.
doi: 10.1186/s13052-019-0708-9 |
[24] |
Gai X, Wang H, Li Y, et al. Fecal microbiota transplantation protects the intestinal mucosal barrier by reconstructing the gut microbiota in a murine model of sepsis[J]. Front Cell Infect Microbiol, 2021, 11: 736204.
doi: 10.3389/fcimb.2021.736204 |
[25] |
DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant[J]. N Engl J Med, 2019, 381(21): 2043-2050.
doi: 10.1056/NEJMoa1910437 |
[26] |
Nicholson MR, Mitchell PD, Alexander E, et al. Efficacy of fecal microbiota transplantation for clostridium difficile infection in children[J]. Clin Gastroenterol Hepatol, 2020, 18(3): 612-619.
doi: 10.1016/j.cgh.2019.04.037 |
[27] |
Okumura T, Nozu T, Ishioh M, et al. Centrally administered butyrate improves gut barrier function, visceral sensation and septic lethality in rats[J]. J Pharmacol Sci, 2021, 146(4): 183-191.
doi: 10.1016/j.jphs.2021.04.005 pmid: 34116731 |
[28] |
Zhang H, Xu J, Wu Q, et al. Gut microbiota mediates the susceptibility of mice to sepsis-associated encephalopathy by butyric acid[J]. J Inflamm Res, 2022, 15: 2103-2119.
doi: 10.2147/JIR.S350566 pmid: 35386224 |
[29] | Weiss SL, Bittinger K, Lee JJ, et al. Decreased intestinal microbiome diversity in pediatric sepsis: a conceptual framework for intestinal dysbiosis to influence immuno-metabolic function[J]. Crit Care Explor, 2021, 3(3): e0360. |
[30] |
van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids[J]. Trends Microbiol, 2021, 29(8): 700-712.
doi: 10.1016/j.tim.2021.02.001 pmid: 33674141 |
[31] |
Fei J, Fu L, Hu B, et al. Obeticholic acid alleviate lipopolysaccharide-induced acute lung injury via its anti-inflammatory effects in mice[J]. Int Immunopharmacol, 2019, 66: 177-184.
doi: S1567-5769(18)31067-1 pmid: 30468885 |
[32] | Jin P, Deng S, Tian M, et al. INT-777 prevents cognitive impairment by activating Takeda G protein-coupled receptor 5 (TGR5) and attenuating neuroinflammation via cAMP/PKA/ CREB signaling axis in a rat model of sepsis[J]. Exp Neurol, 2021, 335:113504. |
[33] |
Urdaneta V, Casadesus J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts[J]. Frontiers in Medicine, 2017, 4: 163.
doi: 10.3389/fmed.2017.00163 pmid: 29043249 |
[34] |
Chen ML, Takeda K, Sundrud MS. Emerging roles of bile acids in mucosal immunity and inflammation[J]. Mucosal Immunol, 2019, 12(4): 851-861.
doi: 10.1038/s41385-019-0162-4 pmid: 30952999 |
[35] | Lajczak-McGinley NK, Porru E, Fallon CM, et al. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis[J]. Physiol Rep, 2020, 8(12): e14456. |
[36] | 杜转环, 马莉, 甄玲玲, 等. 5-羟色胺在脓毒症中作用机制的研究进展[J]. 中华危重病急救医学, 2019, 31(5): 662-664. |
[37] |
Gong S, Yan Z, Liu Z, et al. Intestinal microbiota mediates the susceptibility to polymicrobial sepsis-induced liver injury by granisetron generation in mice[J]. Hepatology, 2019, 69(4): 1751-1767.
doi: 10.1002/hep.30361 pmid: 30506577 |
[38] |
Wang J, Gong S, Wang F, et al. Granisetron protects polymicrobial sepsis-induced acute lung injury in mice[J]. Biochem Biophys Res Commun, 2019, 508(4): 1004-1010.
doi: 10.1016/j.bbrc.2018.12.031 |
[39] | Juhasz L, Rutai A, Fejes R, et al. Divergent effects of the N-methyl-D-aspartate receptor antagonist kynurenic acid and the synthetic analog SZR-72 on microcirculatory and mitochondrial dysfunction in experimental sepsis[J]. Front Med (Lausanne), 2020, 7: 566-582. |
[40] |
Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease[J]. Nat Commun, 2018, 9(1): 3294.
doi: 10.1038/s41467-018-05470-4 pmid: 30120222 |
[41] |
Napier BA, Andres-Terre M, Massis LM, et al. Western diet regulates immune status and the response to LPS-driven sepsis independent of diet-associated microbiome[J]. Proc Natl Acad Sci U S A, 2019, 116(9): 3688-3694.
doi: 10.1073/pnas.1814273116 |
[42] | Yu C, Zhu X, Zheng C, et al. Methyl diet enhanced sepsis-induced mortality through altering gut microbiota[J]. J Inflamm Reh, 2021, 14: 3107-3121. |
[43] |
Wang H, He C, Liu Y, et al. Soluble dietary fiber protects intestinal mucosal barrier by improving intestinal flora in a murine model of sepsis[J]. Biomed Pharmacother, 2020, 129: 110343.
doi: 10.1016/j.biopha.2020.110343 pmid: 32593968 |
[44] |
Melo HM, Santos LE, Ferreira ST. Diet-derived fatty acids, brain inflammation, and mental health[J]. Front Neurosci, 2019, 13: 265.
doi: 10.3389/fnins.2019.00265 |
[45] |
Yang Q, Liang Q, Balakrishnan B, et al. Role of dietary nutrients in the modulation of gut microbiota: a narrative review[J]. Nutrients, 2020, 12(2): 381.
doi: 10.3390/nu12020381 |
[46] |
De Waele E, Malbrain M, Spapen H. Nutrition in sepsis: a bench-to-bedside review[J]. Nutrients, 2020, 12(2): 395.
doi: 10.3390/nu12020395 |
[47] |
Springer AMM, Hortencio TDR, Melro EC, et al. Hypophosphatemia in critically ill pediatric patients receiving enteral and oral nutrition[J]. JPEN J Parenter Enteral Nutr, 2021, 46(4): 842-849.
doi: 10.1002/jpen.2235 pmid: 34291462 |
[48] |
Bowlin MQ, Gray MJ. Inorganic polyphosphate in host and microbe biology[J]. Trends Microbiol, 2021, 29(11): 1013-1023.
doi: 10.1016/j.tim.2021.02.002 pmid: 33632603 |
[49] |
Nichols D, Pimentel MB, Borges FTP, et al. Sustained release of phosphates from hydrogel nanoparticles suppresses bacterial collagenase and biofilm formation in vitro[J]. Front Bioeng Biotechnol, 2019, 7: 153.
doi: 10.3389/fbioe.2019.00153 |
[50] | Liang H, Song H, Zhang X, et al. Metformin attenuated sepsis-related liver injury by modulating gut microbiota[J]. Emerg Microbes Infect, 2022: 1-34. |
[51] |
Vieira-Silva S, Falony G, Belda E, et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis[J]. Nature, 2020, 581(7809): 310-315.
doi: 10.1038/s41586-020-2269-x |
[52] | Liang B, Yang S-jT, Wei KK, et al. Statin use and mortality among patients hospitalized with sepsis: a retrospective cohort study within southern California, 2008-2018[J]. Crit Care Res Pract, 2022: 7127531. |
[53] |
Li Y, Zhao H, Sun G, et al. Alterations in the gut microbiome and metabolome profiles of septic rats treated with aminophylline[J]. J Transl Med, 2022, 20(1): 69.
doi: 10.1186/s12967-022-03280-3 pmid: 35115021 |
[54] | Mu S, Zhang J, Du S, et al. Gut microbiota modulation and anti-inflammatory properties of Xuanbai Chengqi decoction in septic rats[J]. J Ethnopharmacol, 2021, 267: 113534. |
[55] | Zhan L, Liu H, Zheng J, et al. Electroacupuncture at zusanli alleviates sepsis by regulating the TLR4-MyD88-NF-Kappa B pathway and diversity of intestinal flora[J]. Evid Based Complement Alternat Med, 2022: 6706622. |
[1] | ZOU Liping. Childhood encephalopathy: a group of diseases associated with various diseases [J]. Journal of Clinical Pediatrics, 2023, 41(9): 641-643. |
[2] | ZHANG Weihua, ZOU Liping, REN Haitao, GUAN Hongzhi. Beware of the pitfalls in diagnosis and treatment of autoimmune encephalitis in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 644-649. |
[3] | HOU Chi, CHEN Wenxiong, LIAO Yinting, WU Wenxiao, TIAN Yang, ZHU Haixia, PENG Bingwei, ZENG Yiru, WU Wenlin, CHEN Zongzong, LI Xiaojing. Clinical analysis of autoimmune glial fibrillary acidic protein astrocytopathy in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 656-660. |
[4] | YANG Yating, CAI Yuehao, FANG Qiong, CHEN Lang, CHEN Qiaobin, LIN Zhi, WU Feifei, LIN Meng. Clinical analysis of idiopathic and symptomatic occipital lobe epilepsy in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 668-673. |
[5] | HOU Ruolin, WU Jing, LI Ling. Pediatric autoimmune encephalitis with brain MRI showing meningeal thickening and enhancement [J]. Journal of Clinical Pediatrics, 2023, 41(9): 674-679. |
[6] | WU Yuefang, SUN Yanling, WU Wanshui, DU Shuxu, LI Miao, SUN Liming. Analysis of prognostic factors and survival status of group 4 medulloblastoma in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 686-691. |
[7] | SUN Juan, LI Haiying, JIA Peisheng, WANG Huaili. Clinical analysis of fulminant myocarditis in 12 children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 692-696. |
[8] | Reviewer: WANG Chenhui, Reviser: YANG Hui. Research progress on early screening and diagnosis of Crohn's disease in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 708-714. |
[9] | SHEN Nan, DU Bailu. Strategies for the diagnosis, treatment, and management of invasive fungal infections in children with hematologic neoplasms [J]. Journal of Clinical Pediatrics, 2023, 41(8): 571-577. |
[10] | XU Beixue, LIU Quanbo. Clinical analysis of 195 children with invasive pulmonary fungal infection [J]. Journal of Clinical Pediatrics, 2023, 41(8): 584-588. |
[11] | CHEN Hongyu, LIU Zihao, WANG Heping, LIAO Cuijuan, LI Li, WANG Wenjian, LAI Jianwei. Role of nontypeable Haemophilus influenzae biofilms in chronic pulmonary infection in children [J]. Journal of Clinical Pediatrics, 2023, 41(8): 589-593. |
[12] | KANG Lei, GUO Fang, LI Lifang, BAI Xinfeng, CHENG Caiyun, XU Meixian. Value of metagenomic next-generation sequencing in children with visceral leishmaniasis associated with hemolytic histiocytosis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 594-598. |
[13] | SUN Zhicai, LIU Yuling, LI Xiaolin, PAN Xiaofen. Clinical analysis of 15 children with primary nephrotic syndrome complicated with adrenal crisis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 610-612. |
[14] | WANG Hongxia, PAN Xiang, LU Jun. Report a case of α-ketoadipic aciduria caused by compound heterozygous variant of DHTKD1 gene [J]. Journal of Clinical Pediatrics, 2023, 41(8): 624-628. |
[15] | XI Bixin, HU Qun, LIU Aiguo. Research advances of the bronchiolitis obliterans syndrome following allogeneic hematopoietic stem cell transplant in children [J]. Journal of Clinical Pediatrics, 2023, 41(8): 629-633. |
|