Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (7): 481-485.doi: 10.12372/jcp.2023.23e0436
• Original article • Next Articles
HUANG Min
Received:
2023-05-18
Online:
2023-07-15
Published:
2023-07-05
HUANG Min. Application of single cell sequencing technology in Kawasaki disease research[J].Journal of Clinical Pediatrics, 2023, 41(7): 481-485.
[1] |
Burns JC, Glodé MP. Kawasaki syndrome[J]. Lancet, 2004, 364(9433): 533-544.
doi: 10.1016/S0140-6736(04)16814-1 pmid: 15302199 |
[2] | McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American heart association[J]. Circulation, 2017, 135(17): e927-e999. |
[3] |
Makino N, Nakamura Y, Yashiro M, et al. Descriptive epidemiology of Kawasaki disease in Japan, 2011-2012: from the results of the 22nd nationwide survey[J]. J Epidemiol, 2015, 25(3): 239-245.
doi: 10.2188/jea.JE20140089 pmid: 25716368 |
[4] |
Huang MY, Gupta-Malhotra M, Huang JJ, et al. Acute-phase reactants and a supplemental diagnostic aid for Kawasaki disease[J]. Pediatr Cardiol, 2010, 31(8): 1209-1213.
doi: 10.1007/s00246-010-9801-y |
[5] |
Buenrostro JD, Wu B, Litzenburger UM, et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523(7561): 486-490.
doi: 10.1038/nature14590 |
[6] |
Picelli S, Björklund ÅK, Faridani OR, et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10(11): 1096-1098.
doi: 10.1038/nmeth.2639 pmid: 24056875 |
[7] |
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161(5): 1202-1214.
doi: S0092-8674(15)00549-8 pmid: 26000488 |
[8] |
Hashimshony T, Senderovich N, Avital G, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 17: 77.
doi: 10.1186/s13059-016-0938-8 |
[9] |
Wang X, He Y, Zhang Q, et al. Direct comparative analyses of 10X genomics chromium and Smart-seq2[J]. Genomics Proteomics Bioinformatics, 2021, 19(2): 253-266.
doi: 10.1016/j.gpb.2020.02.005 |
[10] |
Zhang Q, He Y, Luo N, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma[J]. Cell, 2019, 179(4): 829-845.
doi: S0092-8674(19)31119-5 pmid: 31675496 |
[11] |
Grindberg RV, Yee-Greenbaum JL, McConnell MJ, et al. RNA-sequencing from single nuclei[J]. Proc Natl Acad Sci USA, 2013, 110(49): 19802-19807.
doi: 10.1073/pnas.1319700110 pmid: 24248345 |
[12] |
Lacar B, Linker SB, Jaeger BN, et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation[J]. Nat Commun, 2016, 7: 11022.
doi: 10.1038/ncomms11022 pmid: 27090946 |
[13] |
Velmeshev D, Schirmer L, Jung D, et al. Single-cell genomics identifies cell type-specific molecular changes in autism[J]. Science, 2019, 364(6441): 685-689.
doi: 10.1126/science.aav8130 pmid: 31097668 |
[14] | Wolfien M, Galow AM, Müller P, et al. Single-nucleus sequencing of an entire mammalian heart: cell type composition and velocity[J]. Cells, 2020, 28, 9(2):318. |
[15] |
Wu H, Kirita Y, Donnelly EL, et al. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis[J]. J Am Soc Nephrol, 2019, 30(1): 23-32.
doi: 10.1681/ASN.2018090912 pmid: 30510133 |
[16] |
Tosti L, Hang Y, Debnath O, et al. Single nucleus and in situ RNA-sequencing Reveal cell topographies in the human pancreas[J]. Gastroenterology, 2021, 160(4): 1330-1344.
doi: 10.1053/j.gastro.2020.11.010 pmid: 33212097 |
[17] |
KleinCA, Schmidt-Kittler O, Schardt JA, et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells[J]. Proc Natl Acad Sci USA, 1999, 96(8): 4494-4499.
pmid: 10200290 |
[18] |
Xu X, Hou Y, Yin XY, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor[J]. Cell, 2012, 148(5): 886-895.
doi: 10.1016/j.cell.2012.02.025 pmid: 22385958 |
[19] |
Wells D, Escudero T, Levy B, et al. First clinical application of comparative genomic hybridization and polar body testing for preimplantation genetic diagnosis of aneuploidy[J]. Fertil Steril, 2002, 78(3): 543-549.
pmid: 12215331 |
[20] |
Shang W, Zhang YS, Shu MM, et al. Comprehensive chromosomal and mitochondrial copy number profiling in human IVF embryos[J]. Reprod Biomed Online, 2018, 36(1): 67-74.
doi: S1472-6483(17)30612-0 pmid: 29203383 |
[21] |
Buenrostro JD, Giresi PG, Zaba LC, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position[J]. Nat Methods, 2013, 10(12): 1213-1218.
doi: 10.1038/nmeth.2688 pmid: 24097267 |
[22] |
Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues[J]. Nat Biotechnol, 2021, 39(7):825-835.
doi: 10.1038/s41587-021-00869-9 pmid: 33846645 |
[23] |
Kong SL, Li H, Tai JA, et al. Concurrent single-cell RNA and targeted DNA sequencing on an automated platform for comeasurement of genomic and transcriptomic signatures[J]. Clin Chem, 2019, 65(2): 272-281.
doi: 10.1373/clinchem.2018.295717 pmid: 30523199 |
[24] |
Rowley AH. Kawasaki disease: novel insights into etiology and genetic susceptibility[J]. Annu Rev Med, 2011, 62: 69-77.
doi: 10.1146/annurev-med-042409-151944 pmid: 20690826 |
[25] |
Kuo HC, Chang WC. Genetic polymorphisms in Kawasaki disease[J]. Acta Pharmacol Sin, 2011, 32(10): 1193-1198.
doi: 10.1038/aps.2011.93 |
[26] |
Popper SJ, Shimizu C, Shike H, et al. Gene-expression patterns reveal underlying biological processes in Kawasaki disease[J]. Genome Biol. 2007; 8(12):R261.
doi: 10.1186/gb-2007-8-12-r261 pmid: 18067656 |
[27] | Hoang LT, Shimizu C, Ling L, et al. Global gene expression profiling identifies new therapeutic targets in acute Kawasaki disease[J]. Genome Med. 2014 Nov 20;6(11):541. |
[28] |
Lehman TJ, Walker SM, Mahnovski V, et al. Coronary arteritis inmice following the systemic injection of group B Lactobacillus casei cell walls in aqueous suspension[J]. Arthritis Rheum, 1985, 28(6): 652-659.
doi: 10.1002/(ISSN)1529-0131 |
[29] |
Murata H. Experimental candida-induced arteritis in mice. Relation to arteritis in the mucocutaneous lymph node syndrome[J]. Microbiol Immunol, 1979, 23(9): 825-831.
pmid: 395420 |
[30] |
Nagi-Miura N, Shingo Y, Adachi Y, et al. Induction of coronary arteritis with administration of CAWS (Candida albicans water-soluble fraction) depending on mouse strains[J]. Immunopharmacol Immunotoxicol, 2004, 26(4): 527-543.
doi: 10.1081/IPH-200042295 |
[31] |
Alphonse MP, Duong TT, Shumitzu C, et al. Inositol-triphosphate 3-kinase C mediates inflammasome activation andtreatment response in Kawasaki disease[J]. J Immunol, 2016, 197(9): 3481-3489.
pmid: 27694492 |
[32] | Porritt RA, Zemmour D, Abe M, et al. NLRP3 inflam-masome mediates immune-stromal interactions in vasculitis[J]. Circ Res, 2021, 129(9): e183-e200. |
[33] |
Marek-Iannucci S, Yildirim AD, Hamid SM, et al. Targeting IRE1 endoribonuclease activity alleviates cardiovascular lesions in a murine model of Kawasaki disease vasculitis[J]. JCI Insight, 2022, 7(6): e157203.
doi: 10.1172/jci.insight.157203 |
[34] |
Geng Z, Tao Y, Zheng F, et al. Altered monocyte subsets in Kawasaki disease revealed by single-cell RNA-sequencing[J]. J Inflamm Res, 2021, 14: 885-896.
doi: 10.2147/JIR.S293993 |
[35] |
Fan X, Zhou Y, Guo X, et al. Utilizing single-cell RNA sequencing for analyzing the characteristics of PBMC in patients with Kawasaki disease[J]. BMC Pediatr, 2021, 21(1): 277.
doi: 10.1186/s12887-021-02754-5 pmid: 34126969 |
[36] |
Wang Z, Xie L, Ding G, et al. Single-cell RNA sequencing of peripheral blood mononuclear cells from acute Kawasaki disease patients[J]. Nat Commun, 2021, 12(1): 5444.
doi: 10.1038/s41467-021-25771-5 pmid: 34521850 |
[1] | HAO Sheng, HUANG Min. Clinical diagnosis and treatment of Kawasaki disease-associated macrophage activation syndrome in children [J]. Journal of Clinical Pediatrics, 2023, 41(7): 486-491. |
[2] | LIU Fang, LIN Yixiang. Long-term management of severe coronary artery lesions in Kawasaki disease [J]. Journal of Clinical Pediatrics, 2023, 41(7): 492-497. |
[3] | ZHOU Cuizhen, SONG Sirui, CHEN Liqin, HUANG Min. Risk factors analysis of coronary artery aneurysm occurrence in children with Kawasaki disease [J]. Journal of Clinical Pediatrics, 2023, 41(7): 498-501. |
[4] | XU Dan, PAN Dongning, LI Yaqin. Effect and predictive value of serum pentraxin-3 level on intravenous immunoglobulin resistance in children with Kawasaki disease [J]. Journal of Clinical Pediatrics, 2023, 41(7): 502-506. |
[5] | HE Fangyuan, HE Xuehua, YUAN Yonghua, ZHU Liurong, WU Yi, XIA Xiaohui. Relationship between blood lipids and age, coronary artery disease and its severity in the acute stage of Kawasaki disease [J]. Journal of Clinical Pediatrics, 2023, 41(6): 455-458. |
[6] | Reviewer: QIU Jiayun, Reviser: ZHOU Guoping. Immune genetics of coronary artery injury pathogenesis in Kawasaki disease [J]. Journal of Clinical Pediatrics, 2023, 41(1): 66-72. |
[7] | SUN Rui, CAO Aimei, LI Xiaohui, YUAN Yue, ZHANG Mingming, LI Dan, SHI Lin. Analysis of echocardiographic assessment of coronary artery abnormalities in children with Kawasaki disease [J]. Journal of Clinical Pediatrics, 2022, 40(9): 690-695. |
[8] | HUANG Yujuan, HUANG Min. Research status of predictive model for IVIG resistance in Kawasaki disease [J]. Journal of Clinical Pediatrics, 2022, 40(7): 481-487. |
[9] | WANG Nana, MENG Lijun, ZHANG Qianwen, ZHANG Fan, HOU Miao, CHEN Ye, WANG Bo, YAN Wenhua, LYU Haitao, SUN Ling, HUANG Jie. Changes and significance of dendritic cell subsets in children with Kawasaki disease [J]. Journal of Clinical Pediatrics, 2022, 40(7): 500-504. |
[10] | LIU Lei, SONG Xiaoxiang, FENG Qihua. Kawasaki disease with arthritis: a report of two cases and literature review [J]. Journal of Clinical Pediatrics, 2022, 40(1): 58-. |
[11] | GAO Weiwei, ZOU Yingxue. Research progress on early recognition, diagnosis and treatment of Kawasaki disease shock syndrome [J]. Journal of Clinical Pediatrics, 2021, 39(3): 237-. |
[12] | DENG Haimei, MIN Li, WU Jinzhi, et al. Kawasaki disease complicated with pancreatitis and low T3 syndrome: a case report [J]. Journal of Clinical Pediatrics, 2021, 39(10): 733-. |
[13] | ZHANG Haiyang, LUO Lili, LI Deyuan, et al. Acute kidney injury caused by Kawasaki disease shock syndrome: a case report [J]. Journal of Clinical Pediatrics, 2021, 39(10): 736-. |
[14] | WANG Fujuan, WU Liangxia. Analysis of risk factors of coronary artery damage in Kawasaki disease [J]. Journal of Clinical Pediatrics, 2020, 38(7): 481-. |
[15] | WU Jiahui, CHENG Fangfang, KONG Xiaoxing, et al. Clinical characteristics and risk factors of recurrent Kawasaki disease [J]. Journal of Clinical Pediatrics, 2020, 38(7): 485-. |
|