Journal of Clinical Pediatrics ›› 2024, Vol. 42 ›› Issue (5): 461-466.doi: 10.12372/jcp.2024.23e0201
• Literature Review • Previous Articles Next Articles
Reviewer: CHEN Shaotian, Reviser: YANG Nan
Received:
2023-03-14
Published:
2024-05-15
Online:
2024-05-10
CHEN Shaotian, YANG Nan. Research progress on mechanism of lipid metabolism in asthma[J].Journal of Clinical Pediatrics, 2024, 42(5): 461-466.
[1] |
Porsbjerg C, Melén E, Lehtimäki L, et al. Asthma[J]. Lancet, 2023, 401(10379): 858-873.
doi: 10.1016/S0140-6736(22)02125-0 |
[2] |
García-Marcos L, Asher MI, Pearce N, et al. The burden of asthma, hay fever and eczema in children in 25 countries: GAN Phase I study[J]. Eur Respir J, 2022, 60(3): 2102866.
doi: 10.1183/13993003.02866-2021 |
[3] |
Mortimer K, Lesosky M, García-Marcos L, et al. The burden of asthma, hay fever and eczema in adults in 17 countries: GAN Phase I study[J]. Eur Respir J, 2022, 60(3): 2102865.
doi: 10.1183/13993003.02865-2021 |
[4] |
Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15.
doi: 10.1007/s00281-020-00785-1 pmid: 32020334 |
[5] |
Köberlin MS, Snijder B, Heinz LX, et al. A conserved circular network of coregulated lipids modulates innate immune responses[J]. Cell, 2015, 162(1): 170-183.
doi: 10.1016/j.cell.2015.05.051 pmid: 26095250 |
[6] |
Sakae H, Ogiso Y, Matsuda M, et al. Ceramide nanoliposomes as potential therapeutic reagents for asthma[J]. Cells, 2023, 12(4): 591.
doi: 10.3390/cells12040591 |
[7] |
Wang R, Li B, Lam SM, et al. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression[J]. J Genet Genomics, 2020, 47(2): 69-83.
doi: S1673-8527(19)30200-0 pmid: 32178981 |
[8] | Jiang T, Dai L, Li P, et al. Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2021, 1866(2): 158853. |
[9] |
Wang S, Tang K, Lu Y, et al. Revealing the role of glycerophospholipid metabolism in asthma through plasma lipidomics[J]. Clin Chim Acta, 2021, 513: 34-42.
doi: 10.1016/j.cca.2020.11.026 pmid: 33307061 |
[10] |
Delgado-Dolset MI, Obeso D, Rodríguez-Coira J, et al. Understanding uncontrolled severe allergic asthma by integration of omic and clinical data[J]. Allergy, 2022, 77(6): 1772-1785.
doi: 10.1111/all.v77.6 |
[11] |
Daley-Yates P, Keppler B, Brealey N, et al. Inhaled glucocorticoid-induced metabolome changes in asthma[J]. Eur J Endocrinol, 2022, 187(3): 413-427.
doi: 10.1530/EJE-21-0912 pmid: 35900313 |
[12] |
Daley-Yates P, Keppler B, Baines A, et al. Metabolomic changes related to airway inflammation, asthma pathogenesis and systemic activity following inhaled fluticasone furoate/vilanterol: a randomized controlled trial[J]. Respir Res, 2022, 23(1): 258.
doi: 10.1186/s12931-022-02164-w |
[13] |
Papamichael MM, Katsardis C, Tsoukalas D, et al. Plasma lipid biomarkers in relation to BMI, lung function, and airway inflammation in pediatric asthma[J]. Metabolomics, 2021, 17(7): 63.
doi: 10.1007/s11306-021-01811-5 pmid: 34175992 |
[14] |
Rago D, Pedersen CT, Huang M, et al. Characteristics and mechanisms of a sphingolipid-associated childhood asthma endotype[J]. Am J Respir Crit Care Med, 2021, 203(7): 853-863.
doi: 10.1164/rccm.202008-3206OC |
[15] |
Zheng P, Bian X, Zhai Y, et al. Metabolomics reveals a correlation between hydroxyeicosatetraenoic acids and allergic asthma: Evidence from three years' immunotherapy[J]. Pediatr Allergy Immunol, 2021, 32(8): 1654-1662.
doi: 10.1111/pai.v32.8 |
[16] |
Chang-Chien J, Huang HY, Tsai HJ, et al. Metabolomic differences of exhaled breath condensate among children with and without asthma[J]. Pediatr Allergy Immunol, 2021, 32(2): 264-272.
doi: 10.1111/pai.v32.2 |
[17] |
Kelly RS, Mendez KM, Huang M, et al. Metabo-endotypes of asthma reveal differences in lung function: discovery and validation in two TOPMed cohorts[J]. Am J Respir Crit Care Med, 2022, 205(3): 288-299.
doi: 10.1164/rccm.202105-1268OC |
[18] | Ualiyeva S, Lemire E, Aviles EC, et al. Tuft cell-produced cysteinyl leukotrienes and IL-25 synergistically initiate lung type 2 inflammation[J]. Sci Immunol, 2021, 6(66): eabj0474. |
[19] |
Esteves P, Blanc L, Celle A, et al. Crucial role of fatty acid oxidation in asthmatic bronchial smooth muscle remodelling[J]. Eur Respir J, 2021, 58(5): 2004252.
doi: 10.1183/13993003.04252-2020 |
[20] |
Tibbitt CA, Stark JM, Martens L, et al. Single-cell RNA sequencing of the T helper cell response to house dust mites defines a distinct gene expression signature in airway Th2 cells[J]. Immunity, 2019, 51(1): 169-184.
doi: S1074-7613(19)30234-1 pmid: 31231035 |
[21] | Chen W, Luo J, Ye Y, et al. The roles of type 2 cytotoxic T cells in inflammation, tissue remodeling, and prostaglandin (PG) D2 production are attenuated by PGD2 receptor 2 antagonism[J]. J Immunol, 2021, 206(11): 2714-2724. |
[22] | Norlander AE, Bloodworth MH, Toki S, et al. Prostaglandin I2 signaling licenses Treg suppressive function and prevents pathogenic reprogramming[J]. J Clin Invest, 2021, 131(7): e140690. |
[23] |
Draijer C, Florez-Sampedro L, Reker-Smit C, et al. Explaining the polarized macrophage pool during murine allergic lung inflammation[J]. Front Immunol, 2022, 13: 1056477.
doi: 10.3389/fimmu.2022.1056477 |
[24] |
Batista-Gonzalez A, Vidal R, Criollo A, et al. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages[J]. Front Immunol, 2020, 10: 2993.
doi: 10.3389/fimmu.2019.02993 |
[25] |
Hou Y, Wei D, Zhang Z, et al. FABP5 controls macrophage alternative activation and allergic asthma by selectively programming long-chain unsaturated fatty acid metabolism[J]. Cell Rep, 2022, 41(7): 111668.
doi: 10.1016/j.celrep.2022.111668 |
[26] |
Abreu SC, Lopes-Pacheco M, da Silva AL, et al. Eicosapentaenoic acid enhances the effects of mesenchymal stromal cell therapy in experimental allergic asthma[J]. Front Immunol, 2018, 9: 1147.
doi: 10.3389/fimmu.2018.01147 pmid: 29881388 |
[27] |
Fussbroich D, Colas RA, Eickmeier O, et al. A combination of LCPUFA ameliorates airway inflammation in asthmatic mice by promoting pro-resolving effects and reducing adverse effects of EPA[J]. Mucosal Immunol, 2020, 13(3): 481-492.
doi: 10.1038/s41385-019-0245-2 pmid: 31907365 |
[28] |
Huang C, Du W, Ni Y, et al. The effect of short-chain fatty acids on M2 macrophages polarization in vitro and in vivo[J]. Clin Exp Immunol, 2022, 207(1): 53-64.
doi: 10.1093/cei/uxab028 |
[29] | Bottemanne P, Paquot A, Ameraoui H, et al. 25-Hydroxycholesterol metabolism is altered by lung inflammation, and its local administration modulates lung inflammation in mice[J]. FASEB J, 2021, 35(4): e21514. |
[30] |
Miyata J, Fukunaga K, Iwamoto R, et al. Dysregulated synthesis of protectin D1 in eosinophils from patients with severe asthma[J]. J Allergy Clin Immunol, 2013, 131(2): 353-360.
doi: 10.1016/j.jaci.2012.07.048 pmid: 23006546 |
[31] |
Carstensen S, Gress C, Erpenbeck VJ, et al. Prostaglandin D2 metabolites activate asthmatic patient-derived type 2 innate lymphoid cells and eosinophils via the DP2 receptor[J]. Respir Res, 2021, 22(1): 262.
doi: 10.1186/s12931-021-01852-3 |
[32] |
James BN, Oyeniran C, Sturgill JL, et al. Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma[J]. J Allergy Clin Immunol, 2021, 147(5): 1936-1948.
doi: 10.1016/j.jaci.2020.10.024 |
[33] | James BN, Weigel C, Green CD, et al. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice[J]. FASEB J, 2023, 37(3): e22799. |
[34] |
Bankova LG, Boyce JA. A new spin on mast cells and cysteinyl leukotrienes: Leukotriene E4 activates mast cells in vivo[J]. J Allergy Clin Immunol, 2018, 142(4): 1056-1057.
doi: S0091-6749(18)31196-5 pmid: 30165055 |
[35] |
Son SE, Koh JM, Im DS. Activation of free fatty acid receptor 4 (FFA4) ameliorates ovalbumin-induced allergic asthma by suppressing activation of dendritic and mast cells in mice[J]. Int Journal Mol Sci, 2022, 23(9): 5270.
doi: 10.3390/ijms23095270 |
[36] |
Karagiannis F, Masouleh SK, Wunderling K, et al. Lipid-droplet formation drives pathogenic group 2 innate lymphoid cells in airway inflammation[J]. Immunity, 2020, 52(4): 620-634.
doi: S1074-7613(20)30116-3 pmid: 32268121 |
[37] |
Oyesola OO, Duque C, Huang LC, et al. The prostaglandin D2 receptor CRTH2 promotes IL-33-induced ILC2 accumulation in the lung[J]. J Immunol, 2020, 204(4): 1001-1011.
doi: 10.4049/jimmunol.1900745 |
[38] |
Miyata J, Yokokura Y, Moro K, et al. 12/15-lipoxygenase regulates IL-33-induced eosinophilic airway inflammation in mice[J]. Front Immunol, 2021, 12: 687192.
doi: 10.3389/fimmu.2021.687192 |
[39] |
Levan SR, Stamnes KA, Lin DL, et al. Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance[J]. Nat Microbiol, 2019, 4(11): 1851-1861.
doi: 10.1038/s41564-019-0498-2 pmid: 31332384 |
[40] |
Gao Y, Zhao C, Wang W, et al. Prostaglandins E2 signal mediated by receptor subtype EP2 promotes IgE production in vivo and contributes to asthma development[J]. Sci Rep, 2016, 6: 20505.
doi: 10.1038/srep20505 pmid: 26852804 |
[41] | Kim N, Thatcher TH, Sime PJ, et al. Corticosteroids inhibit anti-IgE activities of specialized proresolving mediators on B cells from asthma patients[J]. JCI Insight, 2017, 2(3): e88588. |
[42] |
Ravi A, Goorsenberg AWM, Dijkhuis A, et al. Metabolic differences between bronchial epithelium from healthy individuals and patients with asthma and the effect of bronchial thermoplasty[J]. J Allergy Clin Immunol, 2021, 148(5): 1236-1248.
doi: 10.1016/j.jaci.2020.12.653 pmid: 33556463 |
[43] | Pascoe CD, Roy N, Turner-Brannen E, et al. Oxidized phosphatidylcholines induce multiple functional defects in airway epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(4): L703-L717. |
[44] |
Pascoe CD, Jha A, Ryu MH, et al. Allergen inhalation generates pro-inflammatory oxidised phosphatidylcholine associated with airway dysfunction[J]. Eur Respir J, 2021, 57(2): 2000839.
doi: 10.1183/13993003.00839-2020 |
[45] |
Mochimaru T, Fukunaga K, Miyata J, et al. 12-OH-17, 18- Epoxyeicosatetraenoic acid alleviates eosinophilic airway inflammation in murine lungs[J]. Allergy, 2018, 73(2): 369-378.
doi: 10.1111/all.13297 pmid: 28857178 |
[46] | Kanti MM, Striessnig-Bina I, Wieser BI, et al. Adipose triglyceride lipase-mediated lipid catabolism is essential for bronchiolar regeneration[J]. JCI Insight, 2022, 7(9): e149438. |
[47] | Matoba A, Matsuyama N, Shibata S, et al. The free fatty acid receptor 1 promotes airway smooth muscle cell proliferation through MEK/ERK and PI3K/Akt signaling pathways[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314(3): L333-L348. |
[48] | Saunders R, Kaul H, Berair R, et al. DP2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment[J]. Sci Transl Med, 2019, 11(479): eaao6451. |
[49] |
Blais-Lecours P, Laouafa S, Arias-Reyes C, et al. Metabolic adaptation of airway smooth muscle cells to an SPHK2 substrate precedes cytostasis[J]. Am J Respir Cell Mol Biol, 2020, 62(1): 35-42.
doi: 10.1165/rcmb.2018-0397OC |
[50] |
Liu Y, Wei L, He C, et al. Lipoxin A4 inhibits ovalbumin-induced airway inflammation and airway remodeling in a mouse model of asthma[J]. Chem Biol Interact, 2021, 349: 109660.
doi: 10.1016/j.cbi.2021.109660 |
[1] | DENG Menglu, ZHANG Jie, SHENG Wenbin. Research progress of gut microbiota in allergic diseases in children [J]. Journal of Clinical Pediatrics, 2024, 42(8): 741-746. |
[2] | LI Dan, ZHANG Rui, LIU Feng, ZHAO Deyu. Correlation between overweight and obesity and lung function in children with asthma [J]. Journal of Clinical Pediatrics, 2024, 42(5): 429-433. |
[3] | ZHU Wenjing, GU Qinglong, LIU Chuanhe, SHA Li, HUANG Guimin, LU Yingxia, ZHAO Jing, CHEN Yuzhi. Characteristic of obstructive sleep apnea hypopnea syndrome high risk population in children with bronchial asthma [J]. Journal of Clinical Pediatrics, 2024, 42(11): 922-926. |
[4] | YI Liangqin, YANG Jingyi, ZHAO Yan, ZHANG Xi, HE Yiting, TIAN Xiaoyin, ZHANG Guangli, LIU Sha, LUO Zhengxiu. Characteristics of lung function in preschool asthmatic children [J]. Journal of Clinical Pediatrics, 2024, 42(11): 927-934. |
[5] | ZHANG Hao, CHI Yanxia. Bronchodilation test and its clinical application in children [J]. Journal of Clinical Pediatrics, 2023, 41(5): 321-327. |
[6] | WANG Jinrong, MIAO Yu, MA Guangzeng, CAO Luofei. Effect of SARS-CoV-2 infection on pulmonary function in children with asthma [J]. Journal of Clinical Pediatrics, 2023, 41(5): 333-338. |
[7] | WU Yufen, DONG Wenfang, PAN Chunhong, ZHANG Hao. Clinical analysis of the criteria of obstructive ventilation dysfunction in children in Shanghai [J]. Journal of Clinical Pediatrics, 2023, 41(5): 339-345. |
[8] | YANG Shuhui, LIU Yulin, YANG Fan, LUO Zhengxiu, LIU Enmei. Effect of respiratory rehabilitation on children with bronchial asthma: a prospective randomized controlled study [J]. Journal of Clinical Pediatrics, 2023, 41(5): 345-352. |
[9] | LIU Qiuyi, ZHANG Peiling, GUO Rong, YAN Li, GENG Gang, LIU Zheng, TIAN Daiyin, DAI Jihong, LUO Zhengxiu, FU Zhou, NIU Chao. Characteristics of 900 hospitalized children of asthma attack [J]. Journal of Clinical Pediatrics, 2023, 41(5): 353-359. |
[10] | ZHANG Dongjun, SHAO Jie. Safety of biologics and its effects on respiratory viruses in children with asthma during COVID-19 [J]. Journal of Clinical Pediatrics, 2023, 41(12): 955-960. |
[11] | TAN Yongqiang, LIU Haipei, SHI Yanrong. Effect of aerobic exercise on eosinophil inflammation in children with allergic asthma [J]. Journal of Clinical Pediatrics, 2022, 40(8): 586-590. |
[12] | ZOU Yutong, HUANG Linsheng, ZHONG Hui, YANG Rong, GU Li. Structure analysis of the gut microbiota in asthmatic children with different control levels [J]. Journal of Clinical Pediatrics, 2022, 40(5): 382-387. |
[13] | XIE Yili. Research progress of the relationship between childhood asthma and chronic obstructive pulmonary disease [J]. Journal of Clinical Pediatrics, 2021, 39(6): 467-. |
[14] | LI Xinyue. Short-chain fatty acids and intestinal mucosal immunity in food allergy [J]. Journal of Clinical Pediatrics, 2021, 39(6): 471-. |
[15] | WANG Fei, YANG Nan, CHEN Ning, et al. Allergic bronchopulmonary aspergillosis in childhood cystic fibrosis: a case report and literature review [J]. Journal of Clinical Pediatrics, 2021, 39(2): 117-. |
|