Journal of Clinical Pediatrics ›› 2025, Vol. 43 ›› Issue (2): 112-119.doi: 10.12372/jcp.2025.24e0366
• Original Article • Previous Articles Next Articles
Received:
2024-04-15
Accepted:
2024-05-20
Published:
2025-02-15
Online:
2025-02-12
LE Huijuan, WU Jin. Examination of peripheral blood MDSCs quantitative variations and biological properties in infants with necrotizing enterocolitis: utilizing GEO database insights[J].Journal of Clinical Pediatrics, 2025, 43(2): 112-119.
Table 1
GSE236099 sample breakdown"
ADT/HTO标签 | 患者 | 临床分期 |
---|---|---|
TotalSeqTM-B0252 anti-human Hashtag 2 | A5 | NECⅡ急性期(stage2-NEC) |
TotalSeqTM-B0251 anti-human Hashtag 1 | A5 | NECⅡ前期(stage2-NEC-pro) |
TotalSeqTM-B0255 anti-human Hashtag 5 | B6 | NECⅢ急性期(stage3-NEC) |
TotalSeqTM-B0256 anti-human Hashtag 6 | B6 | NECⅢ前期(stage3-NEC-pro) |
[1] | Neu J, Walker WA. Necrotizing enterocolitis[J]. N Engl J Med, 2011. 364(3): 255-264. |
[2] |
Nino DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(10): 590-600.
doi: 10.1038/nrgastro.2016.119 pmid: 27534694 |
[3] | He YM, Li X, Perego M, et al. Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation[J]. Nat Med, 2018, 24(2): 224-231. |
[4] | Ibrohim IS, Pratama HA, Fauzi AR, et al. Association between prognostic factors and the clinical deterioration of preterm neonates with necrotizing enterocolitis[J]. Sci Rep, 2022, 12(1): 13911. |
[5] | Das A, Ariyakumar G, Gupta N, et al. Identifying immune signatures of sepsis to increase diagnostic accuracy in very preterm babies[J]. Nat Commun, 2024, 15(1): 388. |
[6] | Alshetaiwi H, Pervolarakis N, McIntyre LL, et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics[J]. Sci Immunol, 2020, 5(44): eaay6017. |
[7] |
Ghaebi M, Nouri M, Ghasemzadeh A, et al. Immune regulatory network in successful pregnancy and reproductive failures[J]. Biomed Pharmacother, 2017, 88: 61-73.
doi: S0753-3322(16)32496-9 pmid: 28095355 |
[8] | Fainaru O, Hantisteanu S, Hallak M. Immature myeloid cells accumulate in mouse placenta and promote angiogenesis[J]. Am J Obstet Gynecol, 2011, 204(6): 544.e18-544.e23. |
[9] | Pan T, Liu Y, Zhong LM, et al. Myeloid-derived supp-ressor cells are essential for maintaining feto-maternal immunotolerance via STAT3 signaling in mice[J]. J Leukoc Biol, 2016, 100(3): 499-511. |
[10] |
Kang X, Zhang X, Liu Z, et al. CXCR2-mediated granulocytic myeloid-derived suppressor cells' functional characterization and their role in maternal fetal interface[J]. DNA Cell Biol, 2016, 35(7): 358-365.
doi: 10.1089/dna.2015.2962 pmid: 27027573 |
[11] |
Pan T, Zhong L, Wu S, et al. 17β-Oestradiol enhances the expansion and activation of myeloid-derived suppressor cells via signal transducer and activator of transcription (STAT)-3 signalling in human pregnancy[J]. Clin Exp Immunol, 2016, 185(1): 86-97.
doi: 10.1111/cei.12790 pmid: 26969967 |
[12] |
Kang X, Zhang X, Liu Z, et al. Granulocytic myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 expression in CD4+CD25-T cells by activation of the TGF-β/β-catenin pathway[J]. Mol Hum Reprod, 2016, 22(7): 499-511.
doi: 10.1093/molehr/gaw026 pmid: 27016139 |
[13] | Ostrand-Rosenberg S, Sinha P, Figley C, et al. Frontline science: myeloid-derived suppressor cells (MDSCs) facilitate maternal-fetal tolerance in mice[J]. J Leukoc Biol, 2017, 101(5): 1091-1101. |
[14] |
Liu Y, Perego M, Xiao Q, et al. Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice[J]. J Clin Invest, 2019, 129: 4261-4275.
doi: 10.1172/JCI128164 pmid: 31483289 |
[15] | Liu Y, Fatheree NY, Dingle BM, et al. Lactobacillus reuteri DSM 17938 changes the frequency of Foxp3+ regulatory T cells in the intestine and mesenteric lymph node in experimental necrotizing enterocolitis[J]. PLoS One 2013, 8, e56547. |
[16] | Dingle BM, Liu Y, Fatheree NY, et al. FoxP3+ regulatory T cells attenuate experimental necrotizing enterocolitis[J]. PLoS One 2013, 8: e82963. |
[17] |
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 2018 19(2): 108-119.
doi: 10.1038/s41590-017-0022-x pmid: 29348500 |
[18] | Li BH, Garstka MA, Li ZF. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor[J]. Mol Immunol, 2020, 117: 201-215. |
[19] |
Murphy PM, Tiffany HL. Cloning of complementary DNA encoding a functional human interleukin-8 receptor[J]. Science, 1991, 253(5025): 1280-1283.
doi: 10.1126/science.1891716 pmid: 1891716 |
[20] | Che J, Song R, Chen B, et al. Targeting CXCR1/2: The medicinal potential as cancer immunotherapy agents, antagonists research highlights and challenges ahead[J]. Eur J Med Chem, 2020, 185: 111853. |
[21] |
Greene S, Robbins Y, Mydlarz WK, et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models[J]. Clin Cancer Res, 2020, 26(6): 1420-1431.
doi: 10.1158/1078-0432.CCR-19-2625 pmid: 31848188 |
[22] |
Teijeira Á, Garasa S, Gato M, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity[J]. Immunity, 2020, 52(5): 856-871.
doi: S1074-7613(20)30089-3 pmid: 32289253 |
[23] | Grutkoski PS, Graeber CT, D'Amico R, et al. Regulation of IL-8RA (CXCR1) expression in polymorphonuclear leukocytes by hypoxia/reoxygenation[J]. J Leukoc Biol, 1999, 65(2): 171-178. |
[24] | Qin H, Zhuang W, Liu X, et al. Targeting CXCR1 alleviates hyperoxia-induced lung injury through promoting glutamine metabolism[J]. Cell Rep, 2023, 42(7): 112745. |
[1] | HAO Chuangli, JIANG Wujun. Influence of COVID-19 epidemic on the epidemiology of pathogens causing respiratory tract infections in children [J]. Journal of Clinical Pediatrics, 2025, 43(3): 163-167. |
[2] | XU Xuena, LI Jiaoyang, CHEN Suqing, ZHANG Yizhu, JIANG Wujun, HAO Chuangli. Analysis of RSV prevalence dynamics and mixed positivity for other pathogens among children in Suzhou before, during and after the COVID-19 pandemic [J]. Journal of Clinical Pediatrics, 2025, 43(3): 168-176. |
[3] | LI Shanshan, HU Dandan. Analysis of risk factors for death from influenza A (H1N1)-associated encephalopathy in children [J]. Journal of Clinical Pediatrics, 2025, 43(3): 177-183. |
[4] | ZHAI Yu, DUAN Suxia, JIA Fanping, JIA Yongping, ZHANG Jingjing, GUO Yinghui. Analysis of epidemiological characteristics of respiratory tract Boca virus infection in children: a single-center retrospective study [J]. Journal of Clinical Pediatrics, 2025, 43(3): 184-190. |
[5] | ZHAO Peiwei, ZHANG Lei, MENG Qingjie, HE Xuelian. Clinical and genetic features of seven patients with neurodegeneration with brain iron accumulation [J]. Journal of Clinical Pediatrics, 2025, 43(3): 199-203. |
[6] | JIA Shuangzhen, KONG Yan, LIU Qian-chao, ZHU Ailin, WU Jie. Application of precision therapy in pediatric inflammatory bowel disease [J]. Journal of Clinical Pediatrics, 2025, 43(3): 226-232. |
[7] | LI Zhaofei, WANG Lingchao, ZHAO Dean. Research progress in clinical diagnosis and treatment of pediatric esophageal corrosive injury [J]. Journal of Clinical Pediatrics, 2025, 43(3): 237-242. |
[8] | YANG Fan, LI Juan, ZHANG Wanglin, CHANG Guoying, LI Xin, LI Yunyun, SHE Jiaxiao, LIN Kana, LI Hao, WANG Xiumin. Clinical analysis of burosumab in the treatment of X-linked hypophosphatemic rickets [J]. Journal of Clinical Pediatrics, 2025, 43(2): 105-111. |
[9] | HUANG Liufang, WU Bo, WANG Ying. An analysis of predictive markers for surgical treatment of ulcerative colitis in children [J]. Journal of Clinical Pediatrics, 2025, 43(2): 120-127. |
[10] | LIN Lihua, ZHANG Ning, CHEN Qihong, CHEN Lili, CHEN Lixian, YANG Yungang. Bronchial dieulafoy's disease in children: a case report and review of literature [J]. Journal of Clinical Pediatrics, 2025, 43(2): 135-140. |
[11] | ZHANG Shuo, ZHAO Xuemin, SHEN Xiuhua. The effect of vegetarian diet on children and adolescents [J]. Journal of Clinical Pediatrics, 2025, 43(2): 157-162. |
[12] | GUO Fang, KANG Lei, WU Xiaoyuan, JIA Yanhong, DI Yanan, JIA Li, XU Meixian. Analysis of children with severe pertussis complicated with Pneumocystis jirovecii pneumonia [J]. Journal of Clinical Pediatrics, 2025, 43(2): 99-104. |
[13] | LUO Mingjing, YU Jiaming, WANG Xiaodong, ZHANG Xiaoling, YU Yue, ZHANG Yu, WEN Feiqiu, LIU Sixi. Clinical analysis of invasive fungal disease secondary to allogeneic hematopoietic stem cell transplantation in 424 children with thalassemia [J]. Journal of Clinical Pediatrics, 2025, 43(1): 21-28. |
[14] | LIU Dongxia, JIN Rong, LIN Rongjun. Risk factors analysis of severe refractory Mycoplasma pneumoniae pneumonia complicated with bronchitis obliterans in children [J]. Journal of Clinical Pediatrics, 2025, 43(1): 29-34. |
[15] | ZHONG Jinhong, WANG Can, CHEN Fang. Progress in the research of infantile fiberoptic bronchoscopy sedation [J]. Journal of Clinical Pediatrics, 2025, 43(1): 50-55. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 241
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 66
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|