Journal of Clinical Pediatrics ›› 2025, Vol. 43 ›› Issue (8): 635-642.doi: 10.12372/jcp.2025.24e1083
• Literature Review • Previous Articles
ZHAO Yu, ZOU Wenjing, FU Zhou()
Received:
2024-10-14
Accepted:
2024-12-26
Published:
2025-08-15
Online:
2025-07-28
Contact:
FU Zhou
E-mail:fu_zhou79@yahoo.com.cn
CLC Number:
ZHAO Yu, ZOU Wenjing, FU Zhou. Research progress on the role of airway epithelial cells and related cytokines in asthma[J].Journal of Clinical Pediatrics, 2025, 43(8): 635-642.
[1] |
Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors[J]. Semin Immunopathol, 2020, 42(1): 5-15.
doi: 10.1007/s00281-020-00785-1 pmid: 32020334 |
[2] | 陈少甜, 杨男. 脂质代谢在哮喘中作用机制的研究进展[J]. 临床儿科杂志, 2024, 42(5): 461-466. |
Chen ST, Yang N. Research progress on mechanism of lipid metabolism in asthma[J]. Linchuang Erke Zazhi, 2024, 42(5): 461-466. | |
[3] | 李丹, 张睿, 刘峰, 等. 超重和肥胖与哮喘患儿肺功能的相关性研究[J]. 临床儿科杂志, 2024, 42(5): 429-433. |
Li D, Zhang R, Liu F, et al. Correlation between overweight and obesity and lung function in children with asthma[J]. Linchuang Erke Zazhi, 2024, 42(5): 429-433. | |
[4] |
Hellings PW, Steelant B. Epithelial barriers in allergy and asthma[J]. J Allergy Clin Immunol, 2020, 145(6): 1499-1509.
doi: S0091-6749(20)30553-4 pmid: 32507228 |
[5] |
Frey A, Lunding LP, Ehlers JC, et al. More than just a barrier: the immune functions of the airway epithelium in asthma pathogenesis[J]. Front Immunol, 2020, 11: 761.
doi: 10.3389/fimmu.2020.00761 pmid: 32411147 |
[6] | Cumplido-Laso G, Benitez DA, Mulero-Navarro S, et al. Transcriptional regulation of airway epithelial cell differentiation: insights into the notch pathway and beyond[J]. Int J Mol Sci, 2023, 24(19): 14789. |
[7] | Gomi K, Arbelaez V, Crystal RG, et al. Activation of NOTCH1 or NOTCH3 signaling skews human airway basal cell differentiation toward a secretory pathway[J]. PloS one, 2015, 10(2): e0116507. |
[8] | Raby KL, Michaeloudes C, Tonkin J, et al. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD[J]. Front Immunol, 2023, 14: 1201658. |
[9] | Popov G, Aleksandrov R, Petkova V, et al. Analysis of bacterial biofilm formation and MUC5AC and MUC5B expression in chronic rhinosinusitis patients[J]. J Clin Med, 2023, 12(5): 1808. |
[10] | Reid AT, Nichol KS, Chander Veerati P, et al. Blocking notch3 signaling abolishes MUC5AC production in airway epithelial cells from individuals with asthma[J]. Am J Respir Cell Mol Biol, 2020, 62(4): 513-523. |
[11] |
Xu J, Yu H, Sun X. Less is more: rare pulmonary neuroendocrine cells function as critical sensors in lung[J]. Dev Cell, 2020, 55(2): 123-132.
doi: 10.1016/j.devcel.2020.09.024 pmid: 33108755 |
[12] | Sui P, Wiesner DL, Xu J, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses[J]. Science, 2018, 360(6393): eaan8546. |
[13] | Zhu L, An L, Ran D, et al. The club cell marker SCGB1A1 downstream of FOXA2 is reduced in asthma[J]. Am J Respir Cell Mol Biol, 2019, 60(6): 695-704. |
[14] | Singh S, Dutta J, Ray A, et al. Airway epithelium: a neglected but crucial cell type in asthma pathobiology[J]. Diagnostics (Basel), 2023, 13(4): 808. |
[15] | Busse WW, Kraft M, Rabe KF, et al. Understanding the key issues in the treatment of uncontrolled persistent asthma with type 2 inflammation[J]. Eur Respir J, 2021, 58(2): 2003393. |
[16] | Kim HY, Jeong D, Kim JH, et al. Innate type-2 cytokines: from immune regulation to therapeutic targets[J]. Immune Netw, 2024, 24(1): e6. |
[17] | Hamilton D, Lehman H. Asthma phenotypes as a guide for current and future biologic therapies[J]. Clin Rev Allergy Immunol, 2020, 59(2): 160-174. |
[18] | Bachert C, Hicks A, Gane S, et al. The interleukin-4/interleukin-13 pathway in type 2 inflammation in chronic rhinosinusitis with nasal polyps[J]. Front Immunol, 2024, 15: 1356298. |
[19] | Tubau C, Puig L. Therapeutic targeting of the IL-13 pathway in skin inflammation[J]. Expert Rev Clin Immunol, 2021, 17(1): 15-25. |
[20] | Ji T, Li H. T-helper cells and their cytokines in pathogenesis and treatment of asthma[J]. Front Immunol, 2023, 14: 1149203. |
[21] | Xing Z, Liu S, He X. Critical and diverse role of alarmin cytokines in parasitic infections[J]. Front Cell Infect Microbiol, 2024, 14: 1418500. |
[22] | Jin J, Chen X, Zhao Y, et al. The role and its regulatory significance of interleukin-25 in ovalbumin induced atopic dermatitis of mice[J]. Beijing Da Xue Xue Bao Yi Xue Ban, 2024, 56(5): 756-762. |
[23] | Porsbjerg CM, Sverrild A, Lloyd CM, et al. Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics[J]. Eur Respir J, 2020, 56(5): 2000260. |
[24] | Gauvreau GM, Hohlfeld JM, FitzGerald JM, et al. Inhaled anti-TSLP antibody fragment, ecleralimab, blocks responses to allergen in mild asthma[J]. Eur Respir J, 2023, 61(3): 2201193. |
[25] | Wechsler ME, Ruddy MK, Pavord ID, et al. Efficacy and safety of itepekimab in patients with moderate-to-severe asthma[J]. N Engl J Med, 2021, 385(18): 1656-1668. |
[26] | Mosbech CH, Godtfredsen NS, Ulrik CS, Westergaard CG. Biomarker-guided withdrawal of inhaled corticosteroids in asthma patients with a non-T2 inflammatory phenotype - a randomized controlled trial study protocol[J]. BMC Pulm Med, 2023, 23(1): 372. |
[27] | Jeong J, Lee HK. The role of CD4+ T cells and microbiota in the pathogenesis of asthma[J]. Int J Mol Sci, 2021, 22(21): 11822. |
[28] | Yang Y, Jia M, Ou Y, et al. Mechanisms and biomarkers of airway epithelial cell damage in asthma: a review[J]. Clin Respir J, 2021, 15(10): 1027-1045. |
[29] | Tota M, Łacwik J, Laska J, et al. The role of eosinophil-derived neurotoxin and vascular endothelial growth factor in the pathogenesis of eosinophilic asthma[J]. Cells, 2023, 12(9): 1326. |
[30] |
Cao L, Liu F, Liu Y, et al. TSLP promotes asthmatic airway remodeling via p38-STAT3 signaling pathway in human lung fibroblast[J]. Exp Lung Res, 2018, 44(6): 288-301.
doi: 10.1080/01902148.2018.1536175 pmid: 30428724 |
[31] | Jin A, Tang X, Zhai W, et al. TSLP-induced collagen type-I synthesis through STAT3 and PRMT1 is sensitive to calcitriol in human lung fibroblasts[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(10): 119083. |
[32] | Braile M, Fiorelli A, Sorriento D, et al. Human lung-resident macrophages express and are targets of thymic stromal lymphopoietin in the tumor microenvironment[J]. Cells, 2021, 10(8): 2012. |
[33] | Gomułka K, Tota M, Brzdąk K. Effect of VEGF stimulation on CD11b receptor on peripheral eosinophils in asthmatics[J]. Int J Mol Sci, 2023, 24(10): 8880. |
[34] | Xu X, Luo S, Li B, et al. IL-25 contributes to lung fibrosis by directly acting on alveolar epithelial cells and fibroblasts[J]. Exp Biol Med (Maywood), 2019, 244(9): 770-780. |
[35] | Gauvreau GM, Bergeron C, Boulet LP, et al. Sounding the alarmins-The role of alarmin cytokines in asthma[J]. Allergy, 2023, 78(2): 402-417. |
[36] | Tan QY, Cheng ZS. TGFβ1-smad signaling pathway participates in interleukin-33 induced epithelial-to-mesenchymal transition of A549 cells[J]. Cell Physiol Biochem, 2018, 50(2):757-767. |
[37] | Oda N, Miyahara N, Taniguchi A, et al. Requirement for neuropeptide Y in the development of type 2 responses and allergen-induced airway hyperresponsiveness and inflammation[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316(3): L407-L417. |
[38] | Arzola-Martínez L, Benavente R, Vega G, et al. Blocking ATP-releasing channels prevents high extracellular ATP levels and airway hyperreactivity in an asthmatic mouse model[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 321(2): L466-L476. |
[39] |
Tang S, Du X, Yuan L, et al. Airway epithelial ITGB4 deficiency in early life mediates pulmonary spontaneous inflammation and enhanced allergic immune response[J]. J Cell Mol Med, 2020, 24(5): 2761-2771.
doi: 10.1111/jcmm.15000 pmid: 31970850 |
[40] | Yuan L, Liu H, Du X, et al. Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model[J]. J Allergy Clin Immunol, 2023, 151(2): 431-446. |
[41] | Liu P, Li S, Tang L. Nerve growth factor: a potential therapeutic target for lung diseases[J]. Int J Mol Sci, 2021, 22(17): 9112. |
[42] | Ogawa H, Azuma M, Umeno A, et al. Singlet oxygen -derived nerve growth factor exacerbates airway hyperresponsiveness in a mouse model of asthma with mixed inflammation[J]. Allergol Int, 2022, 71(3): 395-404. |
[43] | 王植嘉, 尚云晓. 神经激肽1受体拮抗剂对哮喘小鼠气道炎症和高反应性的影响[J]. 中国小儿急救医学, 2020, 27(2): 105-109. |
Wang ZJ, Shang YX. Effect of neurokinin-1 receptor antagonists on airway inflammation and hyperresponsiveness in asthma mice[J]. Zhongguo Xiaoer Jijiu Yixue, 2020, 27(2): 105-109. | |
[44] |
Hur J, Rhee CK, Lee SY, et al. MicroRNA-21 inhibition attenuates airway inflammation and remodelling by modulating the transforming growth factor β-Smad7 pathway[J]. Korean J Intern Med, 2021, 36(3): 706-720.
doi: 10.3904/kjim.2020.132 pmid: 33601867 |
[45] |
Bradding P, Porsbjerg C, Côté A, et al. Airway hyperresponsiveness in asthma: the role of the epithelium[J]. J Allergy Clin Immunol, 2024, 153(5): 1181-1193.
doi: 10.1016/j.jaci.2024.02.011 pmid: 38395082 |
[46] |
Temann UA, Geba GP, Rankin JA, et al. Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness[J]. J Exp Med, 1998, 188(7): 1307-1320.
doi: 10.1084/jem.188.7.1307 pmid: 9763610 |
[47] |
McKnight CG, Potter C, Finkelman FD. IL-4Rα expression by airway epithelium and smooth muscle accounts for nearly all airway hyperresponsiveness in murine allergic airway disease[J]. Mucosal Immunol, 2020, 13(2): 283-292.
doi: 10.1038/s41385-019-0232-7 pmid: 31745261 |
[1] | WANG Yingshuo, CHEN Zhimin. Leveraging digital intelligence to enhance the diagnosis, treatment, and management of pediatric bronchial asthma [J]. Journal of Clinical Pediatrics, 2025, 43(7): 500-504. |
[2] | LI Fan, HUANG Xianjie, FAN Yazhen, ZHAO Jianchuang, CUI Chenhang, GUO Qiliang, QIAO Junying. Tocilizumab treatment for febrile infection-related epilepsy syndrome in children: 2 cases report and literature review [J]. Journal of Clinical Pediatrics, 2025, 43(7): 532-538. |
[3] | ZHAO Fulin, JIANG Li. Pathogenesis and treatments of juvenile idiopathic arthritis-associated uveitis [J]. Journal of Clinical Pediatrics, 2025, 43(5): 376-382. |
[4] | DENG Menglu, ZHANG Jie, SHENG Wenbin. Research progress of gut microbiota in allergic diseases in children [J]. Journal of Clinical Pediatrics, 2024, 42(8): 741-746. |
[5] | ZHUANG Yafei, CHENG Jin, WU Chen, GUAN Fengjun. Association between SOCS3 expression and glucocorticoid resistance in children with primary nephrotic syndrome [J]. Journal of Clinical Pediatrics, 2024, 42(5): 414-418. |
[6] | WANG Li, LIU Aiguo, WANG Yaqin, HUANG Yongjian, HOU Ling, ZHANG Ai, WANG Songmi, HU Qun. Clinical analysis of 386 cases of secondary thrombocytosis in children [J]. Journal of Clinical Pediatrics, 2024, 42(5): 425-428. |
[7] | LI Dan, ZHANG Rui, LIU Feng, ZHAO Deyu. Correlation between overweight and obesity and lung function in children with asthma [J]. Journal of Clinical Pediatrics, 2024, 42(5): 429-433. |
[8] | CHEN Shaotian, YANG Nan. Research progress on mechanism of lipid metabolism in asthma [J]. Journal of Clinical Pediatrics, 2024, 42(5): 461-466. |
[9] | ZHU Wenjing, GU Qinglong, LIU Chuanhe, SHA Li, HUANG Guimin, LU Yingxia, ZHAO Jing, CHEN Yuzhi. Characteristic of obstructive sleep apnea hypopnea syndrome high risk population in children with bronchial asthma [J]. Journal of Clinical Pediatrics, 2024, 42(11): 922-926. |
[10] | YI Liangqin, YANG Jingyi, ZHAO Yan, ZHANG Xi, HE Yiting, TIAN Xiaoyin, ZHANG Guangli, LIU Sha, LUO Zhengxiu. Characteristics of lung function in preschool asthmatic children [J]. Journal of Clinical Pediatrics, 2024, 42(11): 927-934. |
[11] | HAO Sheng, HUANG Min. Clinical diagnosis and treatment of Kawasaki disease-associated macrophage activation syndrome in children [J]. Journal of Clinical Pediatrics, 2023, 41(7): 486-491. |
[12] | ZHANG Hao, CHI Yanxia. Bronchodilation test and its clinical application in children [J]. Journal of Clinical Pediatrics, 2023, 41(5): 321-327. |
[13] | WANG Jinrong, MIAO Yu, MA Guangzeng, CAO Luofei. Effect of SARS-CoV-2 infection on pulmonary function in children with asthma [J]. Journal of Clinical Pediatrics, 2023, 41(5): 333-338. |
[14] | WU Yufen, DONG Wenfang, PAN Chunhong, ZHANG Hao. Clinical analysis of the criteria of obstructive ventilation dysfunction in children in Shanghai [J]. Journal of Clinical Pediatrics, 2023, 41(5): 339-345. |
[15] | YANG Shuhui, LIU Yulin, YANG Fan, LUO Zhengxiu, LIU Enmei. Effect of respiratory rehabilitation on children with bronchial asthma: a prospective randomized controlled study [J]. Journal of Clinical Pediatrics, 2023, 41(5): 345-352. |
|