[1] |
中华人民共和国中央人民政府. 母乳喂养促进行动计划(2021-2025年)文件解读[EB/OL]. [2025-06-09]. https://www.gov.cn/zhengce/2021-11/25/content_5653303.htm.
|
[2] |
中国发展研究基金会. 中国母乳喂养影响因素调查报告(会议版)[EB/OL]. 2019 [2025-06-09]. https://www.cdrf.org.cn/jjh/pdf/mu.pdf.
|
[3] |
Li Q, Tian J, Xu F, et al. Breastfeeding in China: a review of changes in the past decade[J]. Int J Environ Res Public Health, 2020, 17(21): 8234.
|
[4] |
Kouwenhoven SMP, Muts J, Finken MJJ, et al. Low-protein infant formula and obesity risk[J]. Nutrients, 2022, 14(13): 2728.
|
[5] |
Kouwenhoven SMP, Antl N, Finken MJJ, et al. Long-term effects of a modified, low-protein infant formula on growth and body composition: Follow-up of a randomized, double-blind, equivalence trial[J]. Clin Nutr, 2021, 40(6): 3914-3921.
doi: 10.1016/j.clnu.2021.04.034
pmid: 34139464
|
[6] |
Kouwenhoven SMP, Fleddermann M, Finken MJJ, et al. Early-life metabolic and hormonal markers in blood and growth until age 2 years: results from a randomized controlled trial in healthy infants fed a modified low-protein infant formula[J]. Nutrients, 2021, 13(4): 1159.
|
[7] |
Kouwenhoven SMP, Antl N, Finken MJJ, et al. A modified low-protein infant formula supports adequate growth in healthy, term infants: a randomized, double-blind, equivalence trial[J]. Am J Clin Nutr, 2020, 111(5): 962-974.
doi: 10.1093/ajcn/nqz308
pmid: 31868201
|
[8] |
Oropeza-Ceja LG, Rosado JL, Ronquillo D, et al. Lower protein intake supports normal growth of full-term infants fed formula: a randomized controlled trial[J]. Nutrients, 2018, 10(7): 886.
|
[9] |
Lönnerdal B. Infant formula and infant nutrition: bioactive proteins of human milk and implications for composition of infant formulas[J]. Am J Clin Nutr, 2014, 99(3): 712S-717S.
|
[10] |
Tinghäll Nilsson U, Lönnerdal B, Hernell O, et al. Low-protein infant formula enriched with alpha-lactalbumin during early infancy may reduce insulin resistance at 12 months: a follow-up of a randomized controlled trial[J]. Nutrients, 2024, 16(7): 1026.
|
[11] |
周鹏, 张玉梅, 刘彪, 等. 乳类食物中β-酪蛋白的结构及营养功能[J]. 中国食物与营养, 2020, 26(4): 52-56.
|
|
Zhou P, Zhang YM, Liu B, et al. β-casein of milk: structure and nutritional function[J]. Zhongguo Shiwu Yu Yingyang, 2020, 26(4): 52-56.
|
[12] |
Dallas DC, Guerrero A, Khaldi N, et al. A peptidomic analysis of human milk digestion in the infant stomach reveals protein-specific degradation patterns[J]. J Nutr, 2014, 144(6): 815-820.
doi: 10.3945/jn.113.185793
pmid: 24699806
|
[13] |
Auestad N, Layman DK. Dairy bioactive proteins and peptides: a narrative review[J]. Nutr Rev, 2021, 79(Suppl 2): 36-47.
|
[14] |
徐秀, 郭志平, 罗先琼, 等. 富含α-乳清蛋白及AA/DHA配方奶粉对足月婴儿体格生长及耐受性的影响[J]. 中国儿童保健杂志, 2006, 14(3): 223-225.
|
|
Xu X, Guo ZP, Luo XQ, et al. Growth and tolerance of feeding a reduced protein formula enriched in bovine alpha-lactalbumin and AA/DHA in term infants[J]. Zhongguo Ertong Baojian Zazhi, 2006, 14(3): 223-225.
|
[15] |
Li W, Liu B, Lin Y, et al. The application of lactoferrin in infant formula: the past, present and future[J]. Crit Rev Food Sci Nutr, 2024, 64(17): 5748-5767.
|
[16] |
Schirmbeck GH, Sizonenko S, Sanches EF. Neuroprotective role of lactoferrin during early brain development and injury through lifespan[J]. Nutrients, 2022, 14(14): 2923.
|
[17] |
Bruun S, Jacobsen LN, Ze X, et al. Osteopontin levels in human milk vary across countries and within lactation period: data from a multicenter study[J]. J Pediatr Gastroenterol Nutr, 2018, 67(2): 250-256.
|
[18] |
Li L, Chen J, Zheng Y, et al. Gastro-intestinal digested bovine milk osteopontin modulates gut barrier biomarkers in vitro[J]. Mol Nutr Food Res, 2024, 68(4): e2200777.
|
[19] |
Aksan A, Erdal I, Yalcin S S, et al. Osteopontin levels in human milk are related to maternal nutrition and infant health and growth[J]. Nutrients, 2021, 13(8): 2670.
|
[20] |
West CE, Kvistgaard AS, Peerson JM, et al. Effects of osteopontin-enriched formula on lymphocyte subsets in the first 6 months of life: a randomized controlled trial[J]. Pediatr Res, 2017, 82(1): 63-71.
doi: 10.1038/pr.2017.77
pmid: 28355198
|
[21] |
Lönnerdal B, Kvistgaard AS, Peerson JM, et al. Growth, nutrition, and cytokine response of breast-fed infants and infants fed formula with added bovine osteopontin[J]. J Pediatr Gastroenterol Nutr, 2016, 62(4): 650-657.
|
[22] |
Guo Z, Xie Q, Ren Q, et al. Enhancing immune regulation in vitro: the synergistic impact of 3'-sialyllactose and osteopontin in a nutrient blend following influenza virus infection[J]. Front Immunol, 2024, 15: 1271926.
|
[23] |
Cai R, Zheng Y, Lane JA, et al. In vitro infant fecal fermentation metabolites of osteopontin and 2'-fucosyllactose support intestinal barrier function[J]. J Agric Food Chem, 2025, 73(2): 1642-1655.
|
[24] |
Goulding DA, Bonnet N, Horcajada MN, et al. The impact of complexation or complex coacervation of lactoferrin and osteopontin on simulated infant gastrointestinal digestion, intestinal inflammation, and in vivo bone development[J]. Food Funct, 2024, 15(19): 9928-9940.
doi: 10.1039/d4fo02790f
pmid: 39259160
|
[25] |
Jiang R, Liu L, Du X, et al. Evaluation of bioactivities of the bovine milk lactoferrin-osteopontin complex in infant formulas[J]. J Agric Food Chem, 2020, 68(22): 6104-6111.
|
[26] |
Fontecha J, Brink L, Wu S, et al. Sources, production, and clinical treatments of milk fat globule membrane for infant nutrition and well-being[J]. Nutrients, 2020, 12(6): 1607.
|
[27] |
Zhao J, Yi W, Liu B, et al. MFGM components promote gut Bifidobacterium growth in infant and in vitro[J]. Eur J Nutr, 2022, 61(1): 277-288.
|
[28] |
Deoni SC, Beauchemin J, D'Sa V, et al. Enhanced brain myelination and cognitive development in young children associated with milk fat globule membrane (MFGM) intake: a temporal cohort study[J]. Brain Struct Funct, 2025, 230(4): 52.
|
[29] |
Chen B, Jia Q, Chen Z, et al. Comparative evaluation of enriched formula milk powder with OPO and MFGM vs. breastfeeding and regular formula milk powder in full-term infants: a comprehensive study on gut microbiota, neurodevelopment, and growth[J]. Food Funct, 2024, 15(3): 1417-1430.
|
[30] |
Meng Y, Zhou Y, Li H, et al. Effectiveness of growing-up milk containing only A2 β-casein on digestive comfort in toddlers: a randomized controlled trial in China[J]. Nutrients, 2023, 15(6): 1313.
|
[31] |
Jianqin S, Leiming X, Lu X, et al. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows' milk[J]. Nutr J, 2016, 15: 35.
doi: 10.1186/s12937-016-0147-z
pmid: 27039383
|
[32] |
Sheng X, Li Z, Ni J, et al. Effects of conventional milk versus milk containing only A2 β-Casein on digestion in chinese children: a randomized study[J]. J Pediatr Gastroenterol Nutr, 2019, 69(3): 375-382.
|
[33] |
Yu W, Wang W, Sheng X. Effect of A1 protein-free formula versus conventional formula on acute respiratory infections and diarrhea in toddlers: a randomized controlled trial[J]. J Pediatr Gastroenterol Nutr, 2025, 80(4): 705-713.
|
[34] |
Kim BJ, Kuhfeld RF, Haas JL, et al. Digestive profiles of human milk, recombinant human and bovine lactoferrin: comparing the retained intact protein and peptide release[J]. Nutrients, 2024, 16(14): 2360.
|