[1] |
Gu CT, Li CY, Yang LJ, et al. Enterobacter xiangfangensis sp. nov., isolated from Chinese traditional sourdough, and reclassification of Enterobacter sacchari Zhu et al. as Kosakonia sacchari comb. nov[J]. 2013 Int J Syst Evol Microbiol, 2014, 64(Pt 8): 2650-2656.
|
[2] |
Oshiro S, Tada T, Watanabe S, et al. Emergence and spread of carbapenem-resistant and aminoglycoside-panresistant enterobacter cloacae complex isolates coproducing NDM-Type metallo-β-lactamase and 16S rRNA methylase in myanmar[J]. mSphere, 2020, 5(2): e00054-20.
|
[3] |
Wu W, Wei L, Feng Y, et al. Precise species identification by whole-genome sequencing of enterobacter bloodstream infection, china[J]. Emerg Infect Dis, 2021, 27(1): 161-169.
doi: 10.3201/eid2701.190154
pmid: 33350909
|
[4] |
中华医学会儿科学分会新生儿学组, 中国医师协会新生儿科医师分会感染专业委员会. 新生儿败血症诊断及治疗专家共识(2019年版)[J]. 中华儿科杂志, 2019, 57(4): 252-257.
|
[5] |
尚红, 王毓三, 申子瑜. 全国临床检验操作规程[M]. 4版, 北京: 人民卫生出版社, 2015: 574-625.
|
[6] |
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing[S]. Twenty seventh informational supplement, M100S, 28th Edition. 2018 : 30-114.
|
[7] |
Zhao Y, Zhang J, Fu Y, et al. Molecular characterization of metallo-β-lactamase- producing carbapenem-resistant Enterobacter cloacae complex isolated in Heilongjiang Province of China[J]. BMC Infect Dis, 2020, 20(1): 94.
doi: 10.1186/s12879-020-4768-7
|
[8] |
Durante-Mangoni E, Andini R, Zampino R. Management of carbapenem-resistant Enterobacteriaceae infections[J]. Clin Microbiol Infect, 2019, 25(8): 943-950.
doi: 10.1016/j.cmi.2019.04.013
|
[9] |
Temkin E, Adler A, Lerner A, et al. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management[J]. Ann N Y Acad Sci, 2014, 1323: 22-42.
doi: 10.1111/nyas.12537
|
[10] |
Tsai MH, Hsu JF, Chu SM, et al. Incidence, clinical characteristics and risk factors for adverse outcome in neonates with late-onset sepsis[J]. Pediatr Infect Dis J, 2014, 33(1): e7-e13.
doi: 10.1097/INF.0b013e3182a72ee0
|
[11] |
Xu Y, Bai X, Jin Y, et al. High prevalence of virulencegenes in specific genotypes of atypical enteropathogenic Escherichia coli [J]. Front Cell Infect Microbiol, 2017, 4(7): 109-120.
|
[12] |
Gandra S, Burnham CD. Carbapenem-resistant Enterobacterales in the USA[J]. Lancet Infect Dis, 2020, 20(6): 637-639.
doi: 10.1016/S1473-3099(20)30066-9
|
[13] |
Kizny Gordon A, Phan H, Lipworth SI, et al. Genomic dynamics of species and mobile genetic elements in a prolonged blaIMP-4-associated carbapenemase outbreak in an Australian hospital[J]. J Antimicrob Chemother, 2020, 75(4): 873-882.
doi: 10.1093/jac/dkz526
pmid: 31960024
|
[14] |
Mizrahi A, Delerue T, Morel H, et al. Infections caused by naturally AmpC-producing Enterobacteriaceae: Can we use third-generation cephalosporins? A narrative review[J]. Int J Antimicrob Agents, 2020, 55(2): 105834.
doi: 10.1016/j.ijantimicag.2019.10.015
|
[15] |
Reeves CM, Magallon J, Rocha K, et al. Aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib]-mediated aminoglycoside resistance: phenotypic conversion to susceptibility by silver ions[J]. Antibiotics (Basel), 2020, 10(1): 29.
|
[16] |
Abbasi E, van Belkum A, Ghaznavi-Rad E. Quinolone and macrolide-resistant campylobacter jejuni in pediatric gastroenteritis patients from central iran[J]. Microb Drug Resist, 2019, 25(7): 1080-1086.
doi: 10.1089/mdr.2018.0455
pmid: 31021299
|
[17] |
Azargun R, Sadeghi MR, Soroush Barhaghi MH, et al. The prevalence of plasmid-mediated quinolone resistance and ESBL-production in Enterobacteriaceae isolated from urinary tract infections[J]. Infect Drug Resist, 2018, 11: 1007-1014.
doi: 10.2147/IDR.S160720
pmid: 30087570
|
[18] |
Nwaiwu O, Aduba CC. An in silico analysis of acquired antimicrobial resistance genes in Aeromonas plasmids[J]. AIMS Microbiol, 2020, 6(1): 75-91.
|