Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (8): 561-565.doi: 10.12372/jcp.2023.23e0487
• Commentary • Next Articles
YU Hui
Received:
2023-05-31
Online:
2023-08-15
Published:
2023-08-10
YU Hui. Resistance mechanism and treatment of carbapenem resistant Pseudomonas aeruginosa[J].Journal of Clinical Pediatrics, 2023, 41(8): 561-565.
[1] |
Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis[J]. Lancet Infect Dis, 2018, 18(3): 318-327.
doi: S1473-3099(17)30753-3 pmid: 29276051 |
[2] | Fu P, Xu H, Jing C, et al. Bacterial epidemiology and antimicrobial resistance profiles in children reported by the ISPED program in China, 2016 to 2020[J]. Microbiol Spectr, 2021, 9(3): e0028321. |
[3] | Logan LK, Gandra S, Mandal S, et al. Multidrug- and carbapenem-resistant Pseudomonas aeruginosa in children, United States, 1999-2012[J]. J Pediatr Infect Dis Soc, 2017, 6(4): 352-359. |
[4] |
Seifert H, von Linstow Ml, Janssen H, et al. Antimicrobial susceptibility among Gram-negative isolates in pediatric patients in Europe from 2013-2018 compared to 2004-2012: results from the ATLAS surveillance study[J]. Int J Antimicrob Agents, 2021, 58(5): 106441.
doi: 10.1016/j.ijantimicag.2021.106441 |
[5] |
Blair JM, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance[J]. Nat Rev Microbiol, 2015, 13(1): 42-51.
doi: 10.1038/nrmicro3380 pmid: 25435309 |
[6] |
Hancock RE, Brinkman FS. Function of Pseudomonas porins in uptake and efflux[J]. Annu Rev Microbiol, 2002, 56: 17-38.
pmid: 12142471 |
[7] |
Feng W, Huang Q, Wang Y, et al. Changes in the resistance and epidemiological characteristics of Pseudomonas aeruginosa during a ten-year period[J]. J Microbiol Immunol Infect, 2021, 54(2): 261-266.
doi: 10.1016/j.jmii.2019.08.017 |
[8] |
Daury L, Orange F, Taveau JC, et al. Tripartite assembly of RND multidrug efflux pumps[J]. Nat Commun, 2016, 7: 10731.
doi: 10.1038/ncomms10731 pmid: 26867482 |
[9] |
Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa[J]. Front Microbiol, 2015, 6: 660.
doi: 10.3389/fmicb.2015.00660 pmid: 26217310 |
[10] |
Hassuna NA, Darwish MK, Sayed M, et al. Molecular epidemiology and mechanisms of high-level resistance to meropenem and imipenem in Pseudomonas aeruginosa[J]. Infect Drug Resist, 2020, 13: 285-293.
doi: 10.2147/IDR.S233808 pmid: 32099420 |
[11] | Bonnin RA, Bogaerts P, Girlich D, et al. Molecular characterization of OXA-198 carbapenemase-producing Pseudomonas aeruginosa clinical isolates[J]. Antimicrob Agents Chemother, 2018, 62(6): e02496-17. |
[12] | Reyes J, Komarow L, Chen L, et al. Global epidemiology and clinical outcomes of carbapenem-resistant Pseu-domonas aeruginosa and associated carbapenemases (POP): a prospective cohort study[J]. Lancet Microbe, 2023, 4(3): e159-e170. |
[13] |
Schauer J, Gatermann SG, Hoffmann D, et al. GPC-1, a novel class A carbapenemase detected in a clinical Pseudomonas aeruginosa isolate[J]. J Antimicrob Chemother, 2020, 75(4): 911-916.
doi: 10.1093/jac/dkz536 |
[14] |
Yin S, Chen P, You B, et al. Molecular typing and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a Chinese burn center from 2011 to 2016[J]. Front Microbiol, 2018, 9: 1135.
doi: 10.3389/fmicb.2018.01135 |
[15] |
Breidenstein EB, de la Fuente- Núñez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance[J]. Trends Microbiol, 2011, 19(8): 419-426.
doi: 10.1016/j.tim.2011.04.005 pmid: 21664819 |
[16] |
Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa - mechanisms, epidemiology and evolution[J]. Drug Resist Updat, 2019, 44: 100640.
doi: 10.1016/j.drup.2019.07.002 |
[17] | Botelho J, Grosso F, Peixe L. Characterization of the pJB12 plasmid from Pseudomonas aeruginosa reveals Tn 6352, a novel putative transposon associated with mobilization of the blaVIM-2-harboring In58 integron[J]. Antimicrob Agents Chemother, 2017, 61(5): e02532-16. |
[18] |
van der Zee A, Kraak WB, Burggraaf A, et al. Spread of carbapenem resistance by transposition and conjugation among Pseudomonas aeruginosa[J]. Front Microbiol, 2018, 9: 2057.
doi: 10.3389/fmicb.2018.02057 |
[19] |
Xiong J, Alexander DC, Ma JH, et al. Complete sequence of pOZ176, a 500-kilobase IncP-2 plasmid encoding IMP-9-mediated carbapenem resistance, from outbreak isolate Pseudomonas aeruginosa 96[J]. Antimicrob Agents Chemother, 2013, 57(8): 3775-3782.
doi: 10.1128/AAC.00423-13 |
[20] |
López-Causapé C, Cabot G, Del Barrio-Tofiño E, et al. The versatile mutational resistome of Pseudomonas aeruginosa[J]. Front Microbiol, 2018, 9: 685.
doi: 10.3389/fmicb.2018.00685 pmid: 29681898 |
[21] |
Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms[J]. Int J Med Microbiol, 2002, 292(2): 107-113.
doi: 10.1078/1438-4221-00196 pmid: 12195733 |
[22] |
Pang Z, Raudonis R, Glick BR, et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies[J]. Biotechnol Adv, 2019, 37(1): 177-192.
doi: 10.1016/j.biotechadv.2018.11.013 |
[23] | Rasamiravaka T, Labtani Q, Duez P, et al. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms[J]. Biomed Res Int, 2015: 759348. |
[24] | Chambonnier G, Roux L, Redelberger D, et al. The hybrid histidine kinase lads forms a multicomponent signal transduction system with the GacS/GacA two-component system in Pseudomonas aeruginosa[J]. PLoS Genet, 2016, 12(5): e1006032. |
[25] |
Bordi C, Lamy MC, Ventre I, et al. Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis[J]. Mol Microbiol, 2010, 76(6): 1427-1443.
doi: 10.1111/j.1365-2958.2010.07146.x |
[26] |
Valentini M, Filloux A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria[J]. J Biol Chem, 2016, 291(24): 12547-12555.
doi: 10.1074/jbc.R115.711507 pmid: 27129226 |
[27] |
Tamma PD, Aitken SL, Bonomo RA, et al. Infectious Diseases Society of America 2022 guidance on the treatment of extended-spectrum beta-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa)[J]. Clin Infect Dis, 2022, 75(2): 187-212.
doi: 10.1093/cid/ciac268 |
[28] | 中华医学会呼吸病学分会感染学组. 中国铜绿假单胞菌下呼吸道感染诊治专家共识(2022年版)[J]. 中华结核和呼吸杂志, 2022, 45(8): 739-752. |
[29] |
Paul M, Carrara E, Retamar P, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine)[J]. Clin Microbiol Infect, 2022, 28(4): 521-547.
doi: 10.1016/j.cmi.2021.11.025 |
[30] | Davido B, Fellous L, Lawrence C, et al. Ceftazidime-avibactam and aztreonam, an interesting strategy to overcome beta-lactam resistance conferred by metallo-beta-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2017, 61(9): e01008-17. |
[31] | 王明贵. 广泛耐药革兰阴性菌感染的实验诊断、抗菌治疗及医院感染控制: 中国专家共识[J]. 中国感染与化疗杂志, 2017, 17(1): 82-93. |
[1] | YANG Yating, CAI Yuehao, FANG Qiong, CHEN Lang, CHEN Qiaobin, LIN Zhi, WU Feifei, LIN Meng. Clinical analysis of idiopathic and symptomatic occipital lobe epilepsy in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 668-673. |
[2] | SUN Juan, LI Haiying, JIA Peisheng, WANG Huaili. Clinical analysis of fulminant myocarditis in 12 children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 692-696. |
[3] | SHEN Nan, DU Bailu. Strategies for the diagnosis, treatment, and management of invasive fungal infections in children with hematologic neoplasms [J]. Journal of Clinical Pediatrics, 2023, 41(8): 571-577. |
[4] | ZHANG Yinchun, MO Wenhui, BAI Bo, CHEN Jinmian, SHI Congcong, GU Xia, XIAO Xin, HAO Hu. Genetic screening and early intervention in neonatal hyperammonemia caused by urea cycle disorder [J]. Journal of Clinical Pediatrics, 2023, 41(4): 259-265. |
[5] | WU Xiaoyan, ZHANG Wenzhi, PENG Yun. Relationship between intestinal microbiota and graft-versus-host disease in allogeneic stem cell transplantation and its perspectives [J]. Journal of Clinical Pediatrics, 2023, 41(3): 161-166. |
[6] | XUE Yujuan, LU Aidong, WANG Yu, JIA Yueping, ZUO Yingxi, ZHANG Leping. Clinical analysis of treatment failure in children with acute lymphoblastic leukemia [J]. Journal of Clinical Pediatrics, 2023, 41(3): 204-209. |
[7] | SUN Luming, DUAN Tao. The role of pediatric specialists in multidisciplinary diagnosis and treatment of fetal diseases [J]. Journal of Clinical Pediatrics, 2023, 41(1): 6-10. |
[8] | XU Meng, XIE Lijian. Research status of cardiac autonomic nervous system regulation in vasovagal syncope in children [J]. Journal of Clinical Pediatrics, 2022, 40(7): 494-499. |
[9] | ZENG Senqiang, FAN Huifeng, LIN Haiyang, LIANG Yufeng, ZHANG Dongwei, LU Gen. Clinical analysis of 23 HIV-negative children with Talaromyces marneffei infections [J]. Journal of Clinical Pediatrics, 2022, 40(6): 446-449. |
[10] | SUN Yanru, LIU Li. Drug treatment progress on juvenile dermatomyositis [J]. Journal of Clinical Pediatrics, 2022, 40(5): 395-400. |
[11] | YANG Yijun, ZHANG Zhen, WANG Yumeng, LI Ming, YAO Zhirong. Clinical efficacy analysis of granulomatous periorificial dermatitis in 6 children [J]. Journal of Clinical Pediatrics, 2022, 40(4): 290-293. |
[12] | SHI Xiuyu, HU Linyan, HAN Fang, ZOU Liping. Precision treatment in pediatric epilepsy [J]. Journal of Clinical Pediatrics, 2022, 40(3): 170-176. |
[13] | FAN Yuying, LIU Xueyan, WANG Hua. Update on the progress in diagnosis and treatment of benign epilepsy of childhood with centrotemporal spikes [J]. Journal of Clinical Pediatrics, 2022, 40(3): 177-183. |
[14] | ZHANG Aijun, LIU Qinqin, PU Ting. Standardized treatment and management of immune thrombocytopenia in children [J]. Journal of Clinical Pediatrics, 2022, 40(2): 81-86. |
[15] | YANG Xiaoyan, BIAN Qiuhan, TUO Yuanyuan, WANG Dinghuan, HUANG Jing. Inherited platelet function disorders: diagnosis, treatment and management [J]. Journal of Clinical Pediatrics, 2022, 40(2): 87-94. |
|