Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (9): 708-714.doi: 10.12372/jcp.2023.22e0604
• Literature Review • Previous Articles Next Articles
Reviewer: WANG Chenhui, Reviser: YANG Hui
Received:
2022-04-27
Online:
2023-09-15
Published:
2023-09-05
Reviewer: WANG Chenhui, Reviser: YANG Hui. Research progress on early screening and diagnosis of Crohn's disease in children[J].Journal of Clinical Pediatrics, 2023, 41(9): 708-714.
[1] | 中华医学会儿科学分会消化学组, 中华医学会儿科学分会临床营养学组. 儿童炎症性肠病诊断和治疗专家共识[J]. 中华儿科杂志, 2019, 57(7): 501-507. |
[2] |
Kuenzig ME, Fung SG, Marderfeld L, et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: systematic review[J]. Gastroenterology, 2022, 162(4): 1147-1159.
doi: 10.1053/j.gastro.2021.12.282 pmid: 34995526 |
[3] |
Ricciuto A, Fish JR, Tomalty DE, et al. Diagnostic delay in Canadian children with inflammatory bowel disease is more common in Crohn's disease and associated with decreased height[J]. Arch Dis Child, 2018, 103(4): 319-326.
doi: 10.1136/archdischild-2017-313060 pmid: 28794097 |
[4] |
Ricciuto A, Mack DR, Huynh HQ, et al. Diagnostic delay is associated with complicated disease and growth impairment in paediatric Crohn's disease[J]. J Crohns Colitis, 2021, 15(3): 419-431.
doi: 10.1093/ecco-jcc/jjaa197 |
[5] | 赵茜茜, 李中跃. 2018年欧洲儿童胃肠病学、肝病学和营养协会波尔图炎症性肠病组关于儿童炎症性肠病内镜检查指导意见解读[J]. 临床儿科杂志, 2020, 38(5): 395-399. |
[6] |
Fraquelli M, Castiglione F, Calabrese E, et al. Impact of intestinal ultrasound on the management of patients with inflammatory bowel disease: how to apply scientific evidence to clinical practice[J]. Dig Liver Dis, 2020, 52(1): 9-18.
doi: 10.1016/j.dld.2019.10.004 |
[7] |
Dilillo D, Zuccotti GV, Galli E, et al. Noninvasive testing in the management of children with suspected inflammatory bowel disease[J]. Scand J Gastroenterol, 2019, 54(5): 586-591.
doi: 10.1080/00365521.2019.1604799 |
[8] |
Kang C, Yoon H, Park S, et al. Initial abdominal CT and laboratory findings prior to diagnosis of Crohn's disease in children[J]. Yonsei Med J, 2022, 63(7): 675-682.
doi: 10.3349/ymj.2022.63.7.675 pmid: 35748079 |
[9] |
Nardo GD, Esposito G, Ziparo C, et al. Enteroscopy in children and adults with inflammatory bowel disease[J]. World J Gastroenterol, 2020, 26(39): 5944-5958.
doi: 10.3748/wjg.v26.i39.5944 |
[10] |
Schooler GR, Hull NC, Mavis A, et al. MR imaging evaluation of inflammatory bowel disease in children: where are we now in 2019[J]. Magn Reson Imaging Clin N Am, 2019, 27(2): 291-300.
doi: S1064-9689(19)30007-8 pmid: 30910099 |
[11] |
Sieczkowska-Golub J, Marcinska B, Dadalski M, et al. Usefulness of colon assessment by magnetic resonance enterography in pediatric patients with inflammatory bowel disease-retrospective case series[J]. J Clin Med, 2021, 10(19): 4336.
doi: 10.3390/jcm10194336 |
[12] |
Dillman JR, Smith EA, Sanchez RJ, et al. Pediatric small bowel Crohn disease: correlation of US and MR enterography[J]. Radiographics, 2015, 35(3): 835-848.
doi: 10.1148/rg.2015140002 pmid: 25839736 |
[13] |
Hakim A, Alexakis C, Pilcher J, et al. Comparison of small intestinal contrast ultrasound with magnetic resonance enterography in pediatric Crohn's disease[J]. JGH Open, 2020, 4(2): 126-131.
doi: 10.1002/jgh3.12228 pmid: 32280754 |
[14] | 唐晓艳, 李正红, 董梅, 等. 54例儿童克罗恩病肠外表现和肠道并发症分析[J]. 中国当代儿科杂志, 2020, 22(5): 478-481. |
[15] | 倪耿欢, 赵宏伟, 亓昌珍, 等. 克罗恩病肛瘘与非克罗恩病肛瘘的MRI特征对比分析[J]. 中华放射学杂志, 2019, 53(4): 305-309. |
[16] | 杨辉, 金玉, 李玫, 等. 儿童炎症性肠病生物学标志物检测及其临床意义[J]. 临床儿科杂志, 2016, 34(10): 721-725. |
[17] |
Ashton JJ, Harden A, Beattie RM. Paediatric inflammatory bowel disease: improving early diagnosis[J]. Arch Dis Child, 2018, 103(4): 307-308.
doi: 10.1136/archdischild-2017-313955 pmid: 29175974 |
[18] | 尹杨艳, 陈丹丹, 桂冬梅. 粪便炎症指标检测对儿童炎症性肠病的诊断价值[J]. 中国临床医生杂志, 2021, 49(4): 487-490. |
[19] |
Mizuochi T, Arai K, Kudo T, et al. Antibodies to Crohn's disease peptide 353 as a diagnostic marker for pediatric Crohn's disease: a prospective multicenter study in Japan[J]. J Gastroenterol, 2020, 55(5): 515-522.
doi: 10.1007/s00535-019-01661-y pmid: 31980893 |
[20] |
Shpoliansky M, Roggenbuck D, Pinsker M, et al. Antibodies against glycoprotein 2 are specific biomarkers for pediatric Crohn's disease[J]. Dig Dis Sci, 2021, 66(8): 2619-2626.
doi: 10.1007/s10620-020-06589-5 |
[21] |
Deutschmann C, Sowa M, Murugaiyan J, et al. Identification of chitinase-3-like protein 1 as a novel neutrophil antigenic target in Crohn's disease[J]. J Crohns Colitis, 2019, 13(7): 894-904.
doi: 10.1093/ecco-jcc/jjz012 pmid: 30753386 |
[22] | Alamdari-Palangi V, Vahedi F, Shabaninejad Z, et al. microRNA in inflammatory bowel disease at a glance[J]. Eur J Gastroenterol Hepatol, 2021, 32(2): 140-148. |
[23] |
Szűcs D, Béres NJ, Rokonay R, et al. Increased duodenal expression of miR-146a and -155 in pediatric Crohn's disease[J]. World J Gastroenterol, 2016, 22(26): 6027-6035.
doi: 10.3748/wjg.v22.i26.6027 |
[24] |
Judit Béres N, Kiss Z, Müller KE, et al. Role of microRNA-223 in the regulation of poly (ADP-ribose) polymerase in pediatric patients with Crohn's disease[J]. Scand J Gastroenterol, 2018, 53(9): 1066-1073.
doi: 10.1080/00365521.2018.1498915 |
[25] |
Jabandziev P, Bohosova J, Pinkasova T, et al. The emerging role of noncoding RNAs in pediatric inflammatory bowel disease[J]. Inflamm Bowel Dis, 2020, 26(7): 985-993.
doi: 10.1093/ibd/izaa009 pmid: 32009179 |
[26] |
Cui G, Fan Q, Li Z, et al. Evaluation of anti-TNF therapeutic response in patients with inflammatory bowel disease: current and novel biomarkers[J]. EBioMedicine, 2021, 66: 103329.
doi: 10.1016/j.ebiom.2021.103329 |
[27] |
Torres J, Petralia F, Sato T, et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up to 5 years before diagnosis[J]. Gastroenterology, 2020, 159(1): 96-104.
doi: S0016-5085(20)30327-9 pmid: 32165208 |
[28] |
Starr AE, Deeke SA, Ning Z, et al. Proteomic analysis of ascending colon biopsies from a paediatric inflammatory bowel disease inception cohort identifies protein biomarkers that differentiate Crohn's disease from UC[J]. Gut, 2017, 66(9): 1573-1583.
doi: 10.1136/gutjnl-2015-310705 pmid: 27216938 |
[29] |
Sila S, Jelić M, Trivić I, et al. Altered gut microbiota is present in newly diagnosed pediatric patients with inflammatory bowel disease[J]. J Pediatr Gastroenterol Nutr, 2020, 70(4): 497-502.
doi: 10.1097/MPG.0000000000002611 |
[30] |
Kansal S, Catto-Smith AG, Boniface K, et al. The microbiome in paediatric Crohn's disease-a longitudinal, prospective, single-centre study[J]. J Crohns Colitis, 2019, 13(8): 1044-1054.
doi: 10.1093/ecco-jcc/jjz016 |
[31] |
Kowalska-Duplaga K, Gosiewski T, Kapusta P, et al. Differences in the intestinal microbiome of healthy children and patients with newly diagnosed Crohn's disease[J]. Sci Rep, 2019, 9(1): 18880.
doi: 10.1038/s41598-019-55290-9 pmid: 31827191 |
[32] |
Putignani L, Oliva S, Isoldi S, et al. Fecal and mucosal microbiota profiling in pediatric inflammatory bowel diseases[J]. Eur J Gastroenterol Hepatol, 2021, 33(11): 1376-1386.
doi: 10.1097/MEG.0000000000002050 |
[33] |
Fitzgerald RS, Sanderson IR, Claesson MJ. Paediatric inflammatory bowel disease and its relationship with the microbiome[J]. Microb Ecol, 2021, 82(4): 833-844.
doi: 10.1007/s00248-021-01697-9 pmid: 33666710 |
[34] |
Papa E, Docktor M, Smillie C, et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease[J]. PLoS One, 2012, 7(6): e39242.
doi: 10.1371/journal.pone.0039242 |
[35] |
El Mouzan M, Wang F, Al Mofarreh M, et al. Fungal microbiota profile in newly diagnosed treatment-naïve children with Crohn's disease[J]. J Crohns Colitis, 2017, 11(5): 586-592.
doi: 10.1093/ecco-jcc/jjw197 pmid: 27811291 |
[36] |
El Mouzan MI, Korolev KS, Al Mofarreh MA, et al. Fungal dysbiosis predicts the diagnosis of pediatric Crohn's disease[J]. World J Gastroenterol, 2018, 24(39): 4510-4516.
doi: 10.3748/wjg.v24.i39.4510 |
[37] | Kolho KL, Pessia A, Jaakkola T, et al. Faecal and serum metabolomics in paediatric inflammatory bowel disease[J]. J Crohns Colitis, 2017, 11(3): 321-334. |
[38] |
Daniluk U, Daniluk J, Kucharski R, et al. Untargeted metabolomics and inflammatory markers profiling in children with Crohn's disease and ulcerative colitis-a preliminary study[J]. Inflamm Bowel Dis, 2019, 25(7): 1120-1128.
doi: 10.1093/ibd/izy402 pmid: 30772902 |
[39] |
Filimoniuk A, Daniluk U, Samczuk P, et al. Metabolomic profiling in children with inflammatory bowel disease[J]. Adv Med Sci, 2020, 65(1): 65-70.
doi: 10.1016/j.advms.2019.12.009 |
[40] |
Filimoniuk A, Blachnio-Zabielska A, Imierska M, et al. Sphingolipid analysis indicate lactosylceramide as a potential biomarker of inflammatory bowel disease in children[J]. Biomolecules, 2020, 10(7): 1083.
doi: 10.3390/biom10071083 |
[41] |
Bauset C, Gisbert-Ferrándiz L, Cosín-Roger J. Meta-bolomics as a promising resource identifying potential biomarkers for inflammatory bowel disease[J]. J Clin Med, 2021, 10(4): 622.
doi: 10.3390/jcm10040622 |
[42] |
Martin FP, Su MM, Xie GX, et al. Urinary metabolic insights into host-gut microbial interactions in healthy and IBD children[J]. World J Gastroenterol, 2017, 23(20): 3643-3654.
doi: 10.3748/wjg.v23.i20.3643 |
[43] |
Yamamoto M, Shanmuganathan M, Hart L, et al. Urinary metabolites enable differential diagnosis and therapeutic monitoring of pediatric inflammatory bowel disease[J]. Metabolites, 2021, 11(4): 245.
doi: 10.3390/metabo11040245 |
[44] |
Vernia F, Valvano M, Fabiani S, et al. Are volatile organic compounds accurate markers in the assessment of colorectal cancer and inflammatory bowel diseases? A review[J]. Cancers (Basel), 2021, 13(10): 2361.
doi: 10.3390/cancers13102361 |
[45] | Patel N, Alkhouri N, Eng K, et al. Metabolomic analysis of breath volatile organic compounds reveals unique breathprints in children with inflammatory bowel disease: a pilot study[J]. Aliment Pharmacol Ther, 2014, 40(5): 498-507. |
[46] |
Monasta L, Pierobon C, Princivalle A, et al. Inflammatory bowel disease and patterns of volatile organic compounds in the exhaled breath of children: a case-control study using Ion Molecule Reaction-Mass Spectrometry[J]. PLoS One, 2017, 12(8): e0184118.
doi: 10.1371/journal.pone.0184118 |
[47] |
Bosch S, van Gaal N, Zuurbier RP, et al. Differentiation between pediatric irritable bowel syndrome and inflammatory bowel disease based on fecal scent: proof of principle study[J]. Inflamm Bowel Dis, 2018, 24(11): 2468-2475.
doi: 10.1093/ibd/izy151 pmid: 29788410 |
[1] | ZOU Liping. Childhood encephalopathy: a group of diseases associated with various diseases [J]. Journal of Clinical Pediatrics, 2023, 41(9): 641-643. |
[2] | ZHANG Weihua, ZOU Liping, REN Haitao, GUAN Hongzhi. Beware of the pitfalls in diagnosis and treatment of autoimmune encephalitis in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 644-649. |
[3] | HOU Chi, CHEN Wenxiong, LIAO Yinting, WU Wenxiao, TIAN Yang, ZHU Haixia, PENG Bingwei, ZENG Yiru, WU Wenlin, CHEN Zongzong, LI Xiaojing. Clinical analysis of autoimmune glial fibrillary acidic protein astrocytopathy in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 656-660. |
[4] | YANG Yating, CAI Yuehao, FANG Qiong, CHEN Lang, CHEN Qiaobin, LIN Zhi, WU Feifei, LIN Meng. Clinical analysis of idiopathic and symptomatic occipital lobe epilepsy in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 668-673. |
[5] | HOU Ruolin, WU Jing, LI Ling. Pediatric autoimmune encephalitis with brain MRI showing meningeal thickening and enhancement [J]. Journal of Clinical Pediatrics, 2023, 41(9): 674-679. |
[6] | WU Yuefang, SUN Yanling, WU Wanshui, DU Shuxu, LI Miao, SUN Liming. Analysis of prognostic factors and survival status of group 4 medulloblastoma in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 686-691. |
[7] | SUN Juan, LI Haiying, JIA Peisheng, WANG Huaili. Clinical analysis of fulminant myocarditis in 12 children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 692-696. |
[8] | SHEN Nan, DU Bailu. Strategies for the diagnosis, treatment, and management of invasive fungal infections in children with hematologic neoplasms [J]. Journal of Clinical Pediatrics, 2023, 41(8): 571-577. |
[9] | XU Beixue, LIU Quanbo. Clinical analysis of 195 children with invasive pulmonary fungal infection [J]. Journal of Clinical Pediatrics, 2023, 41(8): 584-588. |
[10] | CHEN Hongyu, LIU Zihao, WANG Heping, LIAO Cuijuan, LI Li, WANG Wenjian, LAI Jianwei. Role of nontypeable Haemophilus influenzae biofilms in chronic pulmonary infection in children [J]. Journal of Clinical Pediatrics, 2023, 41(8): 589-593. |
[11] | KANG Lei, GUO Fang, LI Lifang, BAI Xinfeng, CHENG Caiyun, XU Meixian. Value of metagenomic next-generation sequencing in children with visceral leishmaniasis associated with hemolytic histiocytosis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 594-598. |
[12] | SUN Zhicai, LIU Yuling, LI Xiaolin, PAN Xiaofen. Clinical analysis of 15 children with primary nephrotic syndrome complicated with adrenal crisis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 610-612. |
[13] | WANG Hongxia, PAN Xiang, LU Jun. Report a case of α-ketoadipic aciduria caused by compound heterozygous variant of DHTKD1 gene [J]. Journal of Clinical Pediatrics, 2023, 41(8): 624-628. |
[14] | XI Bixin, HU Qun, LIU Aiguo. Research advances of the bronchiolitis obliterans syndrome following allogeneic hematopoietic stem cell transplant in children [J]. Journal of Clinical Pediatrics, 2023, 41(8): 629-633. |
[15] | WANG Yanfei, TAN Linhua. Research progress on the role of intestinal flora in sepsis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 634-640. |
|