[1] |
Sarricolea ML, Villa-Elízaga I, Lopez J. Respiratory distress syndrome in copper deficiency: an experimental model developed in rats[J]. Biol Neonate, 1993, 63(1): 14-25.
|
[2] |
Arigliani M, Spinelli AM, et al. Nutrition and Lung Growth[J]. Nutrients, 2018, 10(7): 919.
|
[3] |
Szczepanik J, Podgórski T, Domaszewska K. The level of zinc, copper and antioxidant status in the blood serum of women with Hashimoto's thyroiditis[J]. Int J Environ Res Public Health, 2021, 18(15): 7805.
|
[4] |
Socha K, Klimiuk K, Naliwajko SK, et al. Dietary habits, selenium, copper, zinc and total antioxidant status in serum in relation to cognitive functions of patients with Alzheimer's disease[J]. Nutrients, 2021, 13(2): 287.
|
[5] |
Domellöf M, Szitanyi P, Simchowitz V, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Iron and trace minerals[J]. Clin Nutr, 2018, 37(6 Pt B): 2354-2359.
doi: S0261-5614(18)31168-3
pmid: 30078716
|
[6] |
中华医学会儿科学分会新生儿学组. 中国医师协会新生儿科医师分会感染专业委员会制订的新生儿败血症诊断及治疗专家共识(2019年版)[J]. 中华儿科杂志, 2019, 57(4): 252-257.
|
|
The Subspecialty Group of Neonatology, the Society of Pediatric, Chinese Medical Association. Professional Committee of Infectious Diseases, Neonatology Society, Chinese Medical Doctor Association. Expert consensus on the diagnosis and management of neonatal sepsis (version 2019)[J]. Zhonghua Erke Zazhi, 2019, 57(4): 252-257.
|
[7] |
Shen L, Cai N, Wan S, et al. Development and validation of a predictive model for early diagnosis of neonatal acute respiratory distress syndrome based on the Montreux definition[J]. Front Pediatr, 2023, 11: 1276915.
|
[8] |
Swets JA. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240(4857): 1285-1293.
doi: 10.1126/science.3287615
pmid: 3287615
|
[9] |
Grzeszczak K, Łanocha-Arendarczyk N, Malinowski W, et al. Oxidative stress in pregnancy[J]. Biomolecules, 2023, 13(12): 1768.
|
[10] |
Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging[J]. Arch Toxicol, 2023, 97(10): 2499-2574.
doi: 10.1007/s00204-023-03562-9
pmid: 37597078
|
[11] |
Saccà SC, Cutolo CA, Ferrari D, et al. The eye, oxidative damage and polyunsaturated fatty acids[J]. Nutrients, 2018, 10(6): 668.
|
[12] |
Capuzzi E, Ossola P, Caldiroli A, et al. Malondialdehyde as a candidate biomarker for bipolar disorder: A meta-analysis[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2022, 113: 110469.
|
[13] |
Bergin P, Leggett A, Cardwell CR, et al. The effects of vitamin E supplementation on malondialdehyde as a biomarker of oxidative stress in haemodialysis patients: a systematic review and meta-analysis[J]. BMC Nephrol, 2021, 22(1): 126.
|
[14] |
Miller TM, Cudkowicz ME, Genge A, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS[J]. N Engl J Med, 2022, 387(12): 1099-1110.
|
[15] |
Balendra V, Singh SK. Therapeutic potential of astaxanthin and superoxide dismutase in Alzheimer's disease[J]. Open Biol, 2021, 11(6): 210013.
|
[16] |
Abedi A, Ghobadi H, Sharghi A, et al. Effect of saffron supplementation on oxidative stress markers (MDA, TAC, TOS, GPx, SOD, and pro-oxidant/antioxidant balance): An updated systematic review and meta-analysis of randomized placebo-controlled trials[J]. Front Med (Lausanne), 2023, 10: 1071514.
|
[17] |
Mao C, Yuan JQ, Lv YB, et al. Associations between superoxide dismutase, malondialdehyde and all-cause mortality in older adults: a community-based cohort study[J]. BMC Geriatr, 2019, 19(1): 104.
|
[18] |
Gitto E, Reiter RJ, Karbownik M, et al. Respiratory distress syndrome in the newborn: role of oxidative stress[J]. Intensive Care Med, 2001, 27(7): 1116-1123.
|
[19] |
Tanaka T, Saito Y, Matsuda K, et al. Cyclic mechanical stretch-induced oxidative stress occurs via a NOX-dependent mechanism in type II alveolar epithelial cells[J]. Respir Physiol Neurobiol, 2017, 242: 108-116.
doi: S1569-9048(16)30314-7
pmid: 28442445
|
[20] |
Marseglia L, D'Angelo G, Granese R, et al. Role of oxidative stress in neonatal respiratory distress syndrome[J]. Free Radic Biol Med, 2019, 142: 132-137.
|
[21] |
Ahmed AE, Abd-Elmawgood EA, Hassan MH. Circulating protein carbonyls, antioxidant enzymes and related trace minerals among preterms with respiratory distress syndrome[J]. J Clin Diagn Res, 2017, 11(7): BC17-BC21.
|
[22] |
Hamid ERA, Ali WH, Azmy A, et al. Oxidative stress and anti-oxidant markers in premature infants with respiratory distress syndrome[J]. Open Access Maced J Med Sci, 2019, 7(17): 2858-2863.
doi: 10.3889/oamjms.2019.534
pmid: 31844449
|
[23] |
Vojnik C, Hurley LS. Abnormal prenatal lung development resulting from maternal zinc deficiency in rats[J]. J Nutr, 1977, 107(5): 862-872.
pmid: 870653
|
[24] |
Gomez NN, Biaggio VS, Rozzen EJ, et al. Zn-limited diet modifies the expression of the rate-regulatory enzymes involved in phosphatidylcholine and cholesterol synthesis[J]. Br J Nutr, 2006, 96(6): 1038-1046.
|
[25] |
Wu DD, Jin S, Cheng RX, et al. Hydrogen sulfide functions as a micro-modulator bound at the copper active site of Cu/Zn-SOD to regulate the catalytic activity of the enzyme[J]. Cell Rep, 2023, 42(7): 112750.
|
[26] |
Elfarargy MS, Al-Ashmawy GM, Abu-Risha S, et al. Novel adjuvant therapy with zinc supplementation in neonatal respiratory distress syndrome[J]. Endocr Metab Immune Disord Drug Targets, 2021, 21(12): 2253-2259.
doi: 10.2174/1871530321666210729113515
pmid: 34325645
|