[1] |
全国儿科哮喘协作组, 中国疾病预防控制中心环境与健康相关产品安全所. 第三次中国城市儿童哮喘流行病学调查[J]. 中华儿科杂志, 2013, 51(10): 729-735.
|
|
The National Cooperative Group on Childhood Asthma, Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention. Third nationwide survey of childhood asthma in urban areas of China[J]. Zhonghua Erke Zazhi, 2013, 51(10): 729-735.
|
[2] |
Bisgaard H, Nørgaard S, Sevelsted A, et al. Asthma-like symptoms in young children increase the risk of COPD[J]. J Allergy Clin Immunol, 2021, 147(2): 569-576.
doi: 10.1016/j.jaci.2020.05.043
pmid: 32535134
|
[3] |
中华医学会儿科学分会呼吸学组, 中华儿科杂志编辑委员会, 中国医药教育协会儿科专业委员会. 儿童支气管哮喘诊断与防治指南(2025)[J]. 中华儿科杂志, 2025, 63(4): 324-337.
|
|
The Subspecialty Group of Respiratory, the Society of Pediatrics, Chinese Medical Association, The Editorial Board, Chinese Journal of Pediatrics, China Medicine Education Association Committee on Pediatrics. Guidelines for the diagnosis and optimal management of asthma in children (2025)[J]. Zhonghua Erke Zazhi, 2025, 63(4): 324-337.
|
[4] |
工业和信息化部, 商务部, 国家卫生健康委, 等. 医药工业数智化转型实施方案(2025—2030年)[EB/OL]. [2025-05-07]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2025/art_13998d1c720e41438c5d25a943101f76.html.
|
[5] |
Jeminiwa R, Hohmann L, Qian J, et al. Impact of eHealth on medication adherence among patients with asthma: a systematic review and meta-analysis[J]. Respir Med, 2019, 149: 59-68.
doi: S0954-6111(19)30047-2
pmid: 30803887
|
[6] |
Colicino S, Munblit D, Minelli C, et al. Validation of childhood asthma predictive tools: a systematic review[J]. Clin Exp Allergy, 2019, 49(4): 410-418.
doi: 10.1111/cea.13336
pmid: 30657220
|
[7] |
Kothalawala DM, Murray CS, Simpson A, et al. Development of childhood asthma prediction models using machine learning approaches[J]. Clin Transl Allergy, 2021, 11(9): e12076.
|
[8] |
Yu G, Li Z, Li S, et al. The role of artificial intelligence in identifying asthma in pediatric inpatient setting[J]. Ann Transl Med, 2020, 8(21): 1367.
doi: 10.21037/atm-20-2501a
pmid: 33313112
|
[9] |
Oulmalme C, Nakouri H, Jaafar F. A systematic review of generative AI approaches for medical image enhancement: comparing GANs, transformers, and diffusion models[J]. Int J Med Inform, 2025, 199: 105903.
|
[10] |
Mulshine JL, Avila RS, Silva M, et al. AI integrations with lung cancer screening: considerations in developing AI in a public health setting[J]. Eur J Cancer, 2025, 220: 115345.
|
[11] |
Luo AZ, Whitmire E, Stout JW, et al. Automatic characterization of user errors in spirometry[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2017, 2017: 4239-4242.
doi: 10.1109/EMBC.2017.8037792
pmid: 29060833
|
[12] |
Velickovski F, Ceccaroni L, Marti R, et al. Automated spirometry quality assurance: supervised learning from multiple experts[J]. IEEE J Biomed Health Inform, 2018, 22(1): 276-284.
|
[13] |
Das N, Verstraete K, Stanojevic S, et al. Deep-learning algorithm helps to standardise ATS/ERS spirometric acceptability and usability criteria[J]. Eur Respir J, 2020, 56(6): 2000603.
|
[14] |
Jeon ET, Park H, Lee JK, et al. Deep learning-based chronic obstructive pulmonary disease exacerbation prediction using flow-volume and volume-time curve imaging: retrospective cohort study[J]. J Med Internet Res, 2025, 27: e69785.
|
[15] |
Das N, Happaerts S, Gyselinck I, et al. Collaboration between explainable artificial intelligence and pulmonologists improves the accuracy of pulmonary function test interpretation[J]. Eur Respir J, 2023, 61(5): 2201720.
|
[16] |
Mythili A, Sujatha CM, Srinivasan S, et al. Prediction of forced expiratory volume in spirometric pulmonary function test using adaptive neuro fuzzy inference system[J]. Biomed Sci Instrum, 2012, 48: 508-515.
pmid: 22846326
|
[17] |
Ioachimescu OC, Stoller JK. An Alternative spirometric measurement. area under the expiratory flow-volume curve[J]. Ann Am Thorac Soc, 2020, 17(5): 582-588.
doi: 10.1513/AnnalsATS.201908-613OC
pmid: 31899663
|
[18] |
傅唯佳, 汤梁峰, 叶成杰, 等. 运用人工智能技术进行肺功能数据库构建并辅助诊断实践[J]. 中国医疗器械信息, 2022, 28(14): 147-150.
|
|
Fu WJ, Tang LF, Ye CJ, et al. Implementation of an artificial intelligence based clinical decision support system on historical pulmonary function reports[J]. Zhongguo Yiliao Qixie Xinxi, 2022, 28(14): 147-150.
|
[19] |
Almutairi M, Marriott JF, Mansur A. Effect of monitoring adherence to regular inhaled corticosteroid (ICS) alone or in combination with a long-acting β2-agonist (LABA) using electronic methods on asthma outcomes: a narrative systematic review[J]. BMJ Open, 2023, 13(8): e074127.
|