Journal of Clinical Pediatrics ›› 2022, Vol. 40 ›› Issue (11): 875-880.doi: 10.12372/jcp.2022.21e1762
• Continuing Medical Education • Previous Articles
Received:
2021-12-24
Online:
2022-11-15
Published:
2022-11-10
Contact:
ZHAO Ruiqiu
E-mail:zrq0907@yeah.net
CHEN Biao, ZHAO Ruiqiu. Clinical research progress on neonatal sepsis induced by Streptococcus agalactiae[J].Journal of Clinical Pediatrics, 2022, 40(11): 875-880.
[1] |
Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, et al. The global burden of paediatric and neonatal sepsis: a systematic review[J]. Lancet Respir Med, 2018, 6(3): 223-230.
doi: 10.1016/S2213-2600(18)30063-8 pmid: 29508706 |
[2] | Raabe VN, Shane AL. Group B Streptococcus (Streptococcus Agalactiae)[J]. Microbiol Spectr, 2019, 7(2): 10.1128/mierobiolspec. GPP3-007-2018.. |
[3] |
Madrid L, Seale AC, Kohli-Lynch M, et al. Infant group B streptococcal disease incidence and serotypes worldwide: systematic review and meta-analyses[J]. Clin Infect Dis, 2017, 65(suppl_2): s160-s172.
doi: 10.1093/cid/cix656 |
[4] |
Nanduri SA, Petit S, Smelser C, et al. Epidemiology of invasive early-onset and late-onset group B Streptococcal disease in the United States, 2006 to 2015: multistate laboratory and population-based surveillance[J]. JAMA Pediatr, 2019, 173(3): 224-233.
doi: 10.1001/jamapediatrics.2018.4826 |
[5] |
Teatero S, Ferrieri P, Fittipaldi N. Serotype IV sequence type 468 group B Streptococcus neonatal invasive disease, minnesota, USA[J]. Emerg Infect Dis, 2016, 22(11): 1937-1940.
doi: 10.3201/eid2211.152031 pmid: 27767922 |
[6] |
Guan X, Mu X, Ji W, et al. Epidemiology of invasive group B Streptococcal disease in infants from urban area of South China, 2011-2014 [J]. BMC Infect Dis, 2018, 18(1): 14.
doi: 10.1186/s12879-017-2811-0 |
[7] |
Seale AC, Bianchi-Jassir F, Russell NJ, et al. Estimates of the burden of Group B Streptococcal disease worldwide for pregnant women, stillbirths, and children[J]. Clin Infect Dis, 2017, 65(suppl_2): s200-s219.
doi: 10.1093/cid/cix664 |
[8] |
Ji W, Liu H, Madhi SA, et al. Clinical and molecular epidemiology of invasive group B Streptococcus disease among infants, China[J]. Emerg Infect Dis, 2019, 25(11): 2021-2030.
doi: 10.3201/eid2511.181647 |
[9] |
Ding Y, Wang Y, Hsia Y, et al. Systematic review and meta-analyses of incidence for group B Streptococcus disease in infants and antimicrobial resistance, China[J]. Emerg Infect Dis, 2020, 26(11): 2651-2659.
doi: 10.3201/eid2611.181414 |
[10] |
Braye K, Foureur M, de Waal K, et al. Epidemiology of neonatal early-onset sepsis in a geographically diverse Australian health district 2006-2016[J]. PLoS One, 2019, 14(4): e0214298.
doi: 10.1371/journal.pone.0214298 |
[11] |
Kim SJ, Kim GE, Park JH, et al. Clinical features and prognostic factors of early-onset sepsis: a 7.5-year experience in one neonatal intensive care unit[J]. Korean J Pediatr, 2019, 62(1): 36-41.
doi: 10.3345/kjp.2018.06807 pmid: 30304900 |
[12] |
Russell NJ, Seale AC, O'Sullivan C, et al. Risk of early-onset neonatal group B Streptococcal disease with maternal colonization worldwide: systematic review and meta-analyses[J]. Clin Infect Dis, 2017, 65(suppl_2): s152-s159.
doi: 10.1093/cid/cix655 |
[13] | Queensland Clinical Guidelines. Early onset group B Streptococcal disease. Guideline No. MN22.20-V6-R27.Queensland Health, 2022, [2021-12-24] http://www.health.qld.gov.au/qcg |
[14] | Zhou P, Zhou Y, Liu B, et al. Perinatal antibiotic exposure affects the transmission between maternal and neonatal microbiota and is associated with early-onset sepsis[J]. mSphere, 2020, 5(1). |
[15] |
Cools P, van de Wijgert J, Jespers V, et al. Role of HIV exposure and infection in relation to neonatal GBS disease and rectovaginal GBS carriage: a systematic review and meta-analysis[J]. Sci Rep, 2017, 7(1): 13820.
doi: 10.1038/s41598-017-13218-1 pmid: 29062060 |
[16] |
Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis[J]. Lancet, 2017, 390(10104): 1770-1780.
doi: S0140-6736(17)31002-4 pmid: 28434651 |
[17] |
Li X, Ding X, Shi P, et al. Clinical features and antimicrobial susceptibility profiles of culture-proven neonatal sepsis in a tertiary children's hospital, 2013 to 2017[J]. Medicine (Baltimore), 2019, 98(12): e14686.
doi: 10.1097/MD.0000000000014686 |
[18] |
Sonar SA, Lal G. Blood-brain barrier and its function during inflammation and autoimmunity[J]. J Leukoc Biol, 2018, 103(5): 839-853.
doi: 10.1002/JLB.1RU1117-428R |
[19] |
Kohli-Lynch M, Russell NJ, Seale AC, et al. Neuro-developmental impairment in children after group B Streptococcal disease worldwide: systematic review and meta-analyses[J]. Clin Infect Dis, 2017, 65(suppl_2): S190-s199.
doi: 10.1093/cid/cix663 |
[20] |
Rosa-Fraile M, Spellerberg B. Reliable detection of group B Streptococcus in the clinical laboratory[J]. J Clin Microbiol, 2017, 55(9): 2590-2598.
doi: 10.1128/JCM.00582-17 pmid: 28659318 |
[21] |
Guo D, Xi Y, Wang S, et al. Is a positive Christie-Atkinson-Munch-Peterson (CAMP) test sensitive enough for the identification of Streptococcus agalactiae?[J]. BMC Infect Dis, 2019, 19(1): 7.
doi: 10.1186/s12879-018-3561-3 |
[22] |
Dalai R, Dutta S, Pal A, et al. Is lumbar puncture avoidable in low-risk neonates with suspected sepsis?[J]. Am J Perinatol, 2022, 39(1): 99-105.
doi: 10.1055/s-0040-1714397 |
[23] | Pammi M, Flores A, Versalovic J, et al. Molecular assays for the diagnosis of sepsis in neonates[J]. Cochrane Database Syst Rev, 2017, 2(2): Cd011926. |
[24] |
Oeser C, Pond M, Butcher P, et al. PCR for the detection of pathogens in neonatal early onset sepsis[J]. PLoS One, 2020, 15(1): e0226817.
doi: 10.1371/journal.pone.0226817 |
[25] |
Han MY, Xie C, Huang QQ, et al. Evaluation of Xpert GBS assay and Xpert GBS LB assay for detection of streptococcus agalactiae[J]. Ann Clin Microbiol Antimicrob, 2021, 20(1): 62.
doi: 10.1186/s12941-021-00461-8 |
[26] |
El Shahaway AA, El Maghraby HM, Mohammed HA, et al. Diagnostic performance of direct latex agglutination, post-enrichment latex agglutination and culture methods in screening of group B Streptococci in late pregnancy: a comparative study[J]. Infect Drug Resist, 2019, 12: 2583-2588.
doi: 10.2147/IDR.S203543 pmid: 31692504 |
[27] | Hincu MA, Zonda GI, Stanciu GD, et al. Relevance of biomarkers currently in use or research for practical diagnosis approach of neonatal early-onset sepsis[J]. Children (Basel), 2020, 7(12). |
[28] |
Aydin M, Barut S, Akbulut HH, et al. Application of flow cytometry in the early diagnosis of neonatal sepsis[J]. Ann Clin Lab Sci, 2017, 47(2): 184-190.
pmid: 28442521 |
[29] |
Nakstad B, Sonerud T, Solevag AL. Early detection of neonatal group B Streptococcus sepsis and the possible diagnostic utility of IL-6, IL-8, and CD11b in a human umbilical cord blood in vitro model[J]. Infect Drug Resist, 2016, 9: 171-179.
doi: 10.2147/IDR.S106181 pmid: 27468243 |
[30] | Hoover LE. Group B Streptococcus disease: AAP Updates Guidelines for the management of at-risk infants[J]. Am Fam Physician, 2020, 101(6): 378-380. |
[31] | Metcalf BJ, Chochua S, Gertz RE, et al. Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA[J]. Clin Microbiol Infect, 2017, 23(8): 574. e577-574.e514. |
[32] |
Plainvert C, Hays C, Touak G, et al. Multidrug-resistant hypervirulent group B Streptococcus in neonatal invasive infections, France, 2007-2019 [J]. Emerg Infect Dis, 2020, 26(11): 2721-2724.
doi: 10.3201/eid2611.201669 pmid: 33079049 |
[33] | Campisi E, Rosini R, Ji W, et al. Genomic analysis reveals multi-drug resistance clusters in group B Streptococcus CC17 hypervirulent isolates causing neonatal invasive disease in Southern Mainland China[J]. Front Microbiol, 2016, 7: 1265. |
[34] |
Martins ER, Pedroso-Roussado C, Melo-Cristino J, et al. Streptococcus agalactiae causing neonatal infections in Portugal (2005-2015): diversification and emergence of a CC17/PI-2b multidrug resistant sublineage [J]. Front Microbiol, 2017, 8: 499.
doi: 10.3389/fmicb.2017.00499 pmid: 28400757 |
[35] |
Lund SJ, Patras KA, Kimmey JM, et al. Developmental immaturity of siglec receptor expression on neonatal alveolar macrophages predisposes to severe group B Streptococcal infection[J]. iScience, 2020, 23(6): 101207.
doi: 10.1016/j.isci.2020.101207 |
[36] |
Hansen R, Gibson S, De Paiva Alves E, et al. Adaptive response of neonatal sepsis-derived Group B Streptococcus to bilirubin[J]. Sci Rep, 2018, 8(1): 6470.
doi: 10.1038/s41598-018-24811-3 |
[37] | 吴晓彬, 余加林, 李雪梅. 岩藻糖基化人乳低聚糖在新生儿无乳链球菌肺炎治疗中的作用[J]. 中国微生态学杂志, 2020, 32(3): 264-268. |
[38] |
Schüller SS, Kramer BW, Villamor E, et al. Immunomodulation to prevent or treat neonatal sepsis: past, present, and future[J]. Front Pediatr, 2018, 6: 199.
doi: 10.3389/fped.2018.00199 pmid: 30073156 |
[39] | Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or proven infection in neonates[J]. Cochrane Database Syst Rev, 2020, 1(1): Cd001239. |
[40] |
Lee J, Naiduvaje K, Chew KL, et al. Preventing early-onset group B Streptococcal sepsis: clinical risk factor-based screening or culture-based screening?[J]. Singapore Med J, 2021, 62(1): 34-38.
doi: 10.11622/smedj.2019155 |
[41] | 中华医学会围产医学分会,中华医学会妇产科学分会产科学组. 预防围产期B族链球菌病(中国)专家共识[J]. 中华围产医学杂志, 2021, 24(8): 561-566. |
[42] |
Vekemans J, Moorthy V, Friede M, et al. Maternal immunization against group B Streptococcus: World Health Organization research and development technological roadmap and preferred product characteristics[J]. Vaccine, 2019, 37(50): 7391-7393.
doi: S0264-410X(17)31359-2 pmid: 29398277 |
[43] |
Madhi SA, Koen A, Cutland CL, et al. Antibody kinetics and response to routine vaccinations in infants born to women who received an investigational trivalent group B Streptococcus polysaccharide CRM197-conjugate vaccine during pregnancy[J]. Clin Infect Dis, 2017, 65(11): 1897-1904.
doi: 10.1093/cid/cix666 |
[44] |
Absalon J, Segall N, Block SL, et al. Safety and immunogenicity of a novel hexavalent group B Strep-tococcus conjugate vaccine in healthy, non-pregnant adults: a phase 1/2, randomised, placebo-controlled, observer-blinded, dose-escalation trial[J]. Lancet Infect Dis, 2021, 21(2): 263-274.
doi: 10.1016/S1473-3099(20)30478-3 pmid: 32891191 |
[45] |
Lin SM, Jang AY, Zhi Y, et al. Vaccination with a latch peptide provides serotype-independent protection against group B Streptococcus infection in mice[J]. J Infect Dis, 2017, 217(1): 93-102.
doi: 10.1093/infdis/jix565 |
[1] | WANG Yanfei, TAN Linhua. Research progress on the role of intestinal flora in sepsis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 634-640. |
[2] | XIANG Chao, ZHANG Rong, KANG Lan, LEI Xiaoping, LIU Xingqing, DONG Wenbin. Association of coefficient of glycemic variation and SNAPPE-Ⅱ with prognosis in critically ill neonates [J]. Journal of Clinical Pediatrics, 2023, 41(6): 430-435. |
[3] | XU Jinglin, YANG Hansong, CHEN Xinhua, CHEN Jiangbin, LI Xiaoqing, ZHANG Weifeng, CHEN Dongmei. Clinical analysis of continuous blood purification in the treatment of neonatal septic shock with acute kidney injury [J]. Journal of Clinical Pediatrics, 2023, 41(6): 436-441. |
[4] | ZHANG Yongjun, ZHU Tianwen. Early diagnosis and precise intervention of neonatal hyperammonemia [J]. Journal of Clinical Pediatrics, 2023, 41(4): 241-246. |
[5] | Shenzhen Neonatal Data Network. A multicenter survey and clinical analysis of neonatal hyperammonemia [J]. Journal of Clinical Pediatrics, 2023, 41(4): 252-258. |
[6] | CHU Xiaoyun, SUN Yifan, YAN Chongbing, HONG Wenchao, GONG Xiaohui, CAI Cheng. Clinical analysis of urea cycle disorders in 5 neonates [J]. Journal of Clinical Pediatrics, 2023, 41(4): 266-271. |
[7] | HAO Qingfei, CHEN Jing, LIU Lijun, LI Gaopan, CHEN Haoming, ZHANG Jing, GUO Hongxiang, CHENG Xiuyong. Predictive value of neonatal sequential organ failure assessment score for mortality risk of late-onset sepsis in very/extremely low birth weight infants [J]. Journal of Clinical Pediatrics, 2023, 41(10): 670-674. |
[8] | HUANG Dan, JIANG Yajun, ZHANG Zhongyao, LI Luquan. Risk factors of necrotizing enterocolitis in small for gestational age neonates [J]. Journal of Clinical Pediatrics, 2022, 40(9): 661-665. |
[9] | LIU Ling, JIANG Yuhui, NIE Panrong, ZENG Limei, DUAN Gaiyuan, LI Yuchen. Investigation of the relationship between gene polymorphisms and neonatal hyperbilirubinemia in southwest China [J]. Journal of Clinical Pediatrics, 2022, 40(9): 672-678. |
[10] | ZHANG Liangjuan, SHI Jiao, YANG Junlan, LIU Zhenguo, GUO Jinzhen, LI Zhankui, LI Qinghong. Changes and drug resistance analysis of pathogenic bacteria in late-onset sepsis in neonatal intensive care unit [J]. Journal of Clinical Pediatrics, 2022, 40(8): 602-607. |
[11] | YANG Yang, CHI Xia, TONG Meiling, ZHOU Xiaoyu, CHENG Rui, PAN Jingjing, CHEN Xiaoqing. Predictive value of different neonatal illness severity scores for predischarge outcomes in very and extremely low birth weight infants [J]. Journal of Clinical Pediatrics, 2022, 40(8): 608-615. |
[12] | ZHANG Kun, FAN Sainan, ZHENG Fang, ZHANG Jiahui, WU Zhimin, LYU Anping, MA Yanan, FANG Xiaohui, ZHANG Jinping. The effect of phototherapy on intestinal flora and drug-resistant genes in jaundiced neonates [J]. Journal of Clinical Pediatrics, 2022, 40(6): 436-441. |
[13] | WANG Yingcan, TAN Jintong, CHEN Yan, HUANG Qi, XIA Hongping. Neonatal severe hyperparathyroidism caused by novel variation in CASR gene: a case report [J]. Journal of Clinical Pediatrics, 2022, 40(6): 442-445. |
[14] | KANG Xiayan, ZHANG Xinping, FAN Jianghua, SONG Yulei, ZHOU Xiong, CAO Jianshe, HE Jie, XIAO Zhenghui. The relationship between serum insulin level and prognosis in children with sepsis associated encephalopathy [J]. Journal of Clinical Pediatrics, 2022, 40(3): 218-223. |
[15] | DING Jing, XIAO Yihan, XUE Yujuan, FU Jie, LIU Jie, QIN Jiong, ZENG Chaomei. Clinical analysis of neonates affected by maternal chronic myeloid leukemia [J]. Journal of Clinical Pediatrics, 2022, 40(10): 760-764. |
|