Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (2): 150-155.doi: 10.12372/jcp.2023.22e1429
• Literature Review • Previous Articles Next Articles
Reviewer: WANG Shiming, Reviser: WANG Yiweng, ZHANG Yongjun
Received:
2022-10-24
Online:
2023-02-15
Published:
2023-02-16
WANG Shiming, WANG Yiweng, ZHANG Yongjun. Research progress of biomarkers for early diagnosis of fetal growth restriction[J].Journal of Clinical Pediatrics, 2023, 41(2): 150-155.
[1] |
Nardozza LM, Caetano AC, Zamarian AC, et al. Fetal growth restriction: current knowledge[J]. Arch Gynecol Obstet, 2017, 295(5): 1061-1077.
doi: 10.1007/s00404-017-4341-9 pmid: 28285426 |
[2] |
Fetal Growth Restriction: ACOG Practice Bulletin, Number 227[J]. Obstet Gynecol, 2021, 137(2): e16-e28.
doi: 10.1097/AOG.0000000000004251 pmid: 33481528 |
[3] | 中华医学会围产医学分会胎儿医学学组,中华医学会妇产科学分会产科学组. 胎儿生长受限专家共识(2019版)[J]. 中华围产医学杂志, 2019, 22(6): 361-380. |
[4] |
Blencowe H, Krasevec J, de Onis M, et al. National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: a systematic analysis[J]. Lancet Glob Health, 2019, 7(7): e849-e860.
doi: 10.1016/S2214-109X(18)30565-5 |
[5] |
Sacchi C, Marino C, Nosarti C, et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta-analysis[J]. JAMA Pediatr, 2020, 174(8): 772-781.
doi: 10.1001/jamapediatrics.2020.1097 pmid: 32453414 |
[6] |
Colella M, Frérot A, Novais ARB, et al. Neonatal and long-term consequences of fetal growth restriction[J]. Curr Pediatr Rev, 2018, 14(4): 212-218.
doi: 10.2174/1573396314666180712114531 |
[7] |
Bendix I, Miller SL, Winterhager E. Editorial: Causes and consequences of intrauterine growth restriction[J]. Front Endocrinol (Lausanne), 2020, 11: 205.
doi: 10.3389/fendo.2020.00205 |
[8] |
Malhotra A, Allison BJ, Castillo-Melendez M, et al. Neonatal morbidities of fetal growth restriction: pathophysiology and impact[J]. Front Endocrinol (Lausanne), 2019, 10: 55.
doi: 10.3389/fendo.2019.00055 |
[9] |
Monier I, Blondel B, Ego A, et al. Does the presence of risk factors for fetal growth restriction increase the probability of antenatal detection? A French National Study[J]. Paediatr Perinat Epidemiol, 2016, 30(1): 46-55.
doi: 10.1111/ppe.12251 |
[10] | Ozdemir S, Sahin O, Acar Z, et al. Prediction of pregnancy complications with maternal biochemical markers used in Down syndrome screening[J]. Cureus, 2022, 14(3): e23115. |
[11] |
Boonpiam R, Wanapirak C, Sirichotiyakul S, et al. Quad test for fetal aneuploidy screening as a predictor of small-for-gestational age fetuses: a population-based study[J]. BMC Pregnancy Childbirth, 2020, 20(1): 621.
doi: 10.1186/s12884-020-03298-9 |
[12] | Ogino MH, Tadi P. Physiology, chorionic gonadotropin[M]. StatPearls. Treasure Island (FL): StatPearls Publishing, 2021. |
[13] |
Sirikunalai P, Wanapirak C, Sirichotiyakul S, et al. Associations between maternal serum free beta human chorionic gonadotropin (β-hCG) levels and adverse pregnancy outcomes[J]. J Obstet Gynaecol, 2016, 36(2): 178-182.
doi: 10.3109/01443615.2015.1036400 pmid: 26368010 |
[14] |
Genc S, Ozer H, Emeklioglu CN, et al. Relationship between extreme values of first trimester maternal pregnancy associated plasma protein-A, free-β-human chorionic gonadotropin, nuchal translucency and adverse pregnancy outcomes[J]. Taiwan J Obstet Gynecol, 2022, 61(3): 433-440.
doi: 10.1016/j.tjog.2022.02.043 pmid: 35595434 |
[15] |
Honarjoo M, Zarean E, Tarrahi MJ, et al. Role of pregnancy-associated plasma protein A (PAPP-A) and human-derived chorionic gonadotrophic hormone (free β-hCG) serum levels as a marker in predicting of small for gestational age (SGA): a cohort study[J]. J Res Med Sci, 2021, 26: 104.
doi: 10.4103/jrms.JRMS_560_20 pmid: 35126567 |
[16] | Huang J, Liu Y, Yang H, et al. The effect of serum β-human chorionic gonadotropin on pregnancy complications and adverse pregnancy outcomes: a systematic review and meta-analysis[J]. Comput Math Methods Med, 2022, 2022: 8315519. |
[17] |
Kiyokoba R, Uchiumi T, Yagi M, et al. Mitochondrial dysfunction-induced high hCG associated with develo-pment of fetal growth restriction and pre-eclampsia with fetal growth restriction[J]. Sci Rep, 2022, 12(1): 4056.
doi: 10.1038/s41598-022-07893-y pmid: 35260712 |
[18] |
Sharony R, Sharon-Weiner M, Kidron D, et al. The association between maternal serum first trimester free βhCG, second trimester intact hCG levels and foetal growth restriction and preeclampsia[J]. J Obstet Gynaecol, 2018, 38(3): 363-366.
doi: 10.1080/01443615.2017.1340441 pmid: 29385871 |
[19] | Parry S, Carper BA, Grobman WA, et al. Placental protein levels in maternal serum are associated with adverse pregnancy outcomes in nulliparous patients[J]. Am J Obstet Gynecol, 2022, 227(3): 497. |
[20] |
Boutin A, Gasse C, Demers S, et al. Does low PAPP-A predict adverse placenta-mediated outcomes in a low-risk nulliparous population? the Great Obstetrical Syndromes (GOS) Study[J]. J Obstet Gynaecol Can, 2018, 40(6): 663-668.
doi: S1701-2163(17)30762-4 pmid: 29274935 |
[21] |
Kantomaa T, Vääräsmäki M, Gissler M, et al. First trimester low maternal serum pregnancy associated plasma protein-A (PAPP-A) as a screening method for adverse pregnancy outcomes[J]. J Perinat Med, 2022. doi:10.1515/jpm-2022-0241.
doi: 10.1515/jpm-2022-0241 |
[22] |
He B, Hu C, Zhou Y. First-trimester screening for fetal growth restriction using Doppler color flow analysis of the uterine artery and serum PAPP-A levels in unselected pregnancies[J]. J Matern Fetal Neonatal Med, 2021, 34(23): 3857-3861.
doi: 10.1080/14767058.2019.1701646 |
[23] |
Powe CE, Levine RJ, Karumanchi SA. Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease[J]. Circulation, 2011, 123(24): 2856-2869.
doi: 10.1161/CIRCULATIONAHA.109.853127 pmid: 21690502 |
[24] |
Benton SJ, McCowan LM, Heazell AE, et al. Placental growth factor as a marker of fetal growth restriction caused by placental dysfunction[J]. Placenta, 2016, 42: 1-8.
doi: 10.1016/j.placenta.2016.03.010 pmid: 27238707 |
[25] |
Lesmes C, Gallo DM, Gonzalez R, et al. Prediction of small-for-gestational-age neonates: screening by maternal serum biochemical markers at 19-24 weeks[J]. Ultrasound Obstet Gynecol, 2015, 46(3): 341-349.
doi: 10.1002/uog.14899 pmid: 25969963 |
[26] |
Margossian A, Boisson-Gaudin C, Subtil F, et al. Intra-uterine growth restriction impact on maternal serum concentration of PlGF (placental growth factor): a case control study[J]. Gynecol Obstet Fertil, 2016, 44(1): 23-28.
doi: 10.1016/j.gyobfe.2015.11.005 pmid: 26725205 |
[27] |
Montanari L, Alfei A, Albonico G, et al. The impact of first-trimester serum free beta-human chorionic gonadotropin and pregnancy-associated plasma protein A on the diagnosis of fetal growth restriction and small for gestational age infant[J]. Fetal Diagn Ther, 2009, 25(1): 130-135.
doi: 10.1159/000207554 pmid: 19279389 |
[28] |
Shinar S, Tigert M, Agrawal S, et al. Placental growth factor as a diagnostic tool for placental mediated fetal growth restriction[J]. Pregnancy Hypertens, 2021, 25: 123-128.
doi: 10.1016/j.preghy.2021.05.023 pmid: 34119877 |
[29] |
Nuriyeva G, Kose S, Tuna G, et al. A prospective study on first trimester prediction of ischemic placental diseases[J]. Prenat Diagn, 2017, 37(4): 341-349.
doi: 10.1002/pd.5017 |
[30] |
Jeon HR, Jeong DH, Lee JY, et al. sFlt-1/PlGF ratio as a predictive and prognostic marker for preeclampsia[J]. J Obstet Gynaecol Res, 2021, 47(7): 2318-2323.
doi: 10.1111/jog.14815 |
[31] |
Bednarek-Jędrzejek M, Kwiatkowski S, Ksel-Hryciów J, et al. The sFlt-1/PlGF ratio values within the <38, 38-85 and >85 brackets as compared to perinatal outcomes[J]. J Perinat Med, 2019, 47(7): 732-740.
doi: 10.1515/jpm-2019-0019 pmid: 31339858 |
[32] |
Chen W, Wei Q, Liang Q, et al. Diagnostic capacity of sFlt-1/PlGF ratio in fetal growth restriction: a systematic review and meta-analysis[J]. Placenta, 2022, 127: 37-42.
doi: 10.1016/j.placenta.2022.07.020 pmid: 35952596 |
[33] |
Gaccioli F, Sovio U, Cook E, et al. Screening for fetal growth restriction using ultrasound and the sFLT1/PlGF ratio in nulliparous women: a prospective cohort study[J]. Lancet Child Adolesc Health, 2018, 2(8): 569-581.
doi: S2352-4642(18)30129-9 pmid: 30119716 |
[34] |
Garcia-Manau P, Mendoza M, Bonacina E, et al. Soluble fms-like tyrosine kinase to placental growth factor ratio in different stages of early-onset fetal growth restriction and small for gestational age[J]. Acta Obstet Gynecol Scand, 2021, 100(1): 119-128.
doi: 10.1111/aogs.13978 |
[35] |
Rolnik DL, Wang Y, Hyett J, et al. Serum podocalyxin at 11-13 weeks of gestation in the prediction of small for gestational age neonates[J]. J Perinatol, 2019, 39(6): 784-790.
doi: 10.1038/s41372-019-0370-5 pmid: 30952947 |
[36] |
Behram M, Oğlak SC, Dağ İ. Circulating levels of Elabela in pregnant women complicated with intrauterine growth restriction[J]. J Gynecol Obstet Hum Reprod, 2021, 50(8): 102127.
doi: 10.1016/j.jogoh.2021.102127 |
[37] |
Birdir C, Fox L, Droste L, et al. MR-proANP, a cardio-vascular biomarker to predict late-onset preeclampsia and intrauterine growth restricted fetuses[J]. Pregnancy Hypertens, 2020, 22: 54-58.
doi: S2210-7789(20)30092-1 pmid: 32739718 |
[38] |
Moros G, Boutsikou T, Fotakis C, et al. Insights into intrauterine growth restriction based on maternal and umbilical cord blood metabolomics[J]. Sci Rep, 2021, 11(1): 7824.
doi: 10.1038/s41598-021-87323-7 pmid: 33837233 |
[39] |
Sovio U, Goulding N, McBride N, et al. A maternal serum metabolite ratio predicts fetal growth restriction at term[J]. Nat Med, 2020, 26(3): 348-353.
doi: 10.1038/s41591-020-0804-9 pmid: 32161413 |
[40] |
Lee C, Lee SM, Byun DJ, et al. Maternal signatures of cortisol in first trimester small-for-gestational age[J]. Reprod Sci, 2022, 29(5): 1498-1505.
doi: 10.1007/s43032-021-00822-w pmid: 35001327 |
[41] |
Tagliaferri S, Cepparulo P, Vinciguerra A, et al. miR-16-5p, miR-103-3p, and miR-27b-3p as early peripheral biomarkers of fetal growth restriction[J]. Front Pediatr, 2021, 9: 611112.
doi: 10.3389/fped.2021.611112 |
[42] |
Hromadnikova I, Kotlabova K, Krofta L. First-trimester screening for fetal growth restriction and small-for-gestational-age pregnancies without preeclampsia using cardiovascular disease-associated microRNA biomarkers[J]. Biomedicines, 2022, 10(3): 718.
doi: 10.3390/biomedicines10030718 |
[43] |
Whitehead CL, Walker SP, Tong S. Measuring circulating placental RNAs to non-invasively assess the placental transcriptome and to predict pregnancy complications[J]. Prenat Diagn, 2016, 36(11): 997-1008.
doi: 10.1002/pd.4934 |
[1] | LIU Hongyan, LIU Huikun, LENG Junhong. Analysis of the results of the combined hearing and deafness genetic screening of newborns in Tianjin [J]. Journal of Clinical Pediatrics, 2023, 41(2): 146-149. |
[2] | LIANG Lili. Genetic classification, diagnosis, and treatment of hyperphenylalaninemia [J]. Journal of Clinical Pediatrics, 2023, 41(2): 92-97. |
[3] | LU Xiaoyan, CHEN Shaohong, CHEN Yingying, ZHOU Wenjun, ZHOU Chan, SONG Yan, LI Luquan, TANG Wenyan. Related factors affecting delayed thyroid stimulating hormone elevation in preterm infants with gestational age <34 weeks [J]. Journal of Clinical Pediatrics, 2023, 41(10): 675-679. |
[4] | HU Haili, LI Weidong, WANG Yan, SONG Wangsheng, MA Qingqing. Neonatal screening and gene variation analysis of primary carnitine deficiency in Hefei City [J]. Journal of Clinical Pediatrics, 2023, 41(10): 680-684. |
[5] | WANG Zhixin, LU Lina, WANG Jinling, YAN Weihui, CAI Wei, WANG Ying. Clinical application of a pediatric nutrition screening-assessment tool in gastroenterology ward [J]. Journal of Clinical Pediatrics, 2022, 40(5): 376-381. |
[6] | WANG Ying, LU Lina. Application of nutrition screening and assessment tools for hospitalized children [J]. Journal of Clinical Pediatrics, 2022, 40(11): 801-806. |
[7] | WANG Weiqing, LI Wenjie, SONG Dongpo, et al. Clinical characteristics and gene variation of short-chain acyl-CoA dehydrogenase deficiency [J]. Journal of Clinical Pediatrics, 2020, 38(9): 687-. |
[8] | JI Yiting, SHEN Chun, FAN Yun, ZHANG Ting, SHU Yan, CHEN Liangliang, ZHU Tao, LI Fei, XU Mingyu. The role of symbolic play test in early diagnosis and identification of autism spectrum disorders [J]. , 2018, 36(9): 674-. |
[9] | PAN Cheng, ZOU Xiaoming, CHEN Gang, WANG Tao, JIANG Xianyu, CHEN Jianyong. The role of physical examination, pulse oximetry screening, and perfusion index in screening of neonatal congenital heart disease [J]. , 2018, 36(3): 166-. |
[10] | WANG Han, LI Tingdong, GUO Xiaoyi. Research progress in laboratory detection of cytomegalovirus and its feasibility analysis for neonatal screening [J]. , 2018, 36(3): 221-. |
[11] | XIA Chaoran, HUANG Ying, REN Zhaorui. Clinical significance of receiver operating characteristic curve analysis in the screening of thalassemia [J]. , 2017, 35(5): 340-. |
[12] | WANG Xiuli, PENG Lei, YANG Danyan, WU Jiao . Analysis of screening and therapeutic effect of congenital hypothyroidism [J]. , 2016, 34(8): 602-. |
[13] | JIA Anqi, WU Junhua, GUO Anying, QIU Haiyan. Analysis of intervals of pulse oximetry in congenital heart disease screening [J]. , 2016, 34(5): 357-. |
[14] | ZHENG Cuifang. Advances in the enteral nutrition therapy in pediatric patients with Crohn’s disease [J]. , 2016, 34(4): 307-. |
[15] | XIE Qi, HUANG Ling, LI Xinhui. The clinical outcomes of nutritional support in children with high nutritional risk [J]. , 2016, 34(12): 917-. |
|