Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (10): 715-720.doi: 10.12372/jcp.2023.22e1186
• Continuing Medical Education • Previous Articles
Received:
2022-09-05
Online:
2023-10-15
Published:
2023-10-08
REN Shuying, ZHANG Qin. Influencing factors of respiratory tract microecology and its significance in bronchopulmonary dysplasia[J].Journal of Clinical Pediatrics, 2023, 41(10): 715-720.
[1] |
Homan TD, Nayak RP. Short- and long-term complications of bronchopulmonary dysplasia[J]. Respir Care, 2021, 66(10): 1618-1629.
doi: 10.4187/respcare.08401 pmid: 34552015 |
[2] | Gilfillan M, Bhandari A, Bhandari V. Diagnosis and management of bronchopulmonary dysplasia[J]. BMJ, 2021, 375: n1974. |
[3] |
Piersigilli F, Van Grambezen B, Hocq C, et al. Nutrients and microbiota in lung diseases of prematurity: the placenta-gut-lung triangle[J]. Nutrients, 2020, 12(2):469.
doi: 10.3390/nu12020469 |
[4] |
Gao XY, Dai YH, Fan DZ, et al. The association between the microbes in the tracheobronchial aspirate fluid and bronchopulmonary dysplasia in preterm infants[J]. Pediatr Neonatol, 2020, 61(3): 306-310.
doi: 10.1016/j.pedneo.2019.12.010 |
[5] |
El Saie A, Fu C, Grimm SL, et al. Metabolome and microbiome multi-omics integration from a murine lung inflammation model of bronchopulmonary dysplasia[J]. Pediatr Res, 2022, 92(6):1580-1589.
doi: 10.1038/s41390-022-02002-1 pmid: 35338351 |
[6] |
Lohmann P, Luna RA, Hollister EB, et al. The airway microbiome of intubated premature infants: characteristics and changes that predict the development of bronchopulmonary dysplasia[J]. Pediatr Res, 2014, 76(3): 294-301.
doi: 10.1038/pr.2014.85 pmid: 24941215 |
[7] |
Gallacher D, Mitchell E, Alber D, et al. Dissimilarity of the gut-lung axis and dysbiosis of the lower airways in ventilated preterm infants[J]. Eur Respir J, 2020, 55(5): 1901909.
doi: 10.1183/13993003.01909-2019 |
[8] |
Pattaroni C, Watzenboeck ML, Schneidegger S, et al. Early-life formation of the microbial and immunological environment of the human airways[J]. Cell Host Microbe, 2018, 24(6):857-865.
doi: S1931-3128(18)30557-2 pmid: 30503510 |
[9] |
Mortensen MS, Rasmussen MA, Stokholm J, et al. Modeling transfer of vaginal microbiota from mother to infant in early life[J]. Elife, 2021, 10: e57051.
doi: 10.7554/eLife.57051 |
[10] |
Lal CV, Travers C, Aghai ZH, et al. The airway microbiome at birth[J]. Sci Rep, 2016, 6: 31023.
doi: 10.1038/srep31023 pmid: 27488092 |
[11] |
Sakwinska O, Foata F, Berger B, et al. Does the maternal vaginal microbiota play a role in seeding the microbiota of neonatal gut and nose?[J]. Benef Microbes, 2017, 8(5):763-778.
doi: 10.3920/BM2017.0064 pmid: 29022384 |
[12] | Wu S, Ren L, Li J, et al. Breastfeeding might partially contribute to gut microbiota construction and stabilization of propionate metabolism in cesarean-section infants[J]. Eur J Nutr, 202362(2):615-623. |
[13] |
Kobeshavidze N, Chikviladze D, Gachechiladze K, et al. The microbial structure of the mucous membrane of the respiratory tract in premature infants[J]. Georgian Med News, 2019(288): 131-135.
pmid: 31101792 |
[14] |
Sakai AM, Iensue T, Pereira KO, et al. Colonization by multidrug-resistant microorganisms of hospitalized newborns and their mothers in the neonatal unit context[J]. J Infect Dev Ctries, 2020, 14(7): 765-771.
doi: 10.3855/jidc.12091 |
[15] |
Tirone C, Paladini A, De Maio F, et al. The relationship between maternal and neonatal microbiota in spontaneous preterm birth: a pilot study[J]. Front Pediatr, 2022, 10: 909962.
doi: 10.3389/fped.2022.909962 |
[16] |
Hjelmsø MH, Shah SA, Thorsen J, et al. Prenatal dietary supplements influence the infant airway microbiota in a randomized factorial clinical trial[J]. Nat Commun, 2020, 11(1): 426.
doi: 10.1038/s41467-020-14308-x pmid: 31969566 |
[17] |
Christensen ED, Hjelmso MH, Thorsen J, et al. The developing airway and gut microbiota in early life is influenced by age of older siblings[J]. Microbiome, 2022, 10(1): 106.
doi: 10.1186/s40168-022-01305-z pmid: 35831879 |
[18] |
Cardelli E, Calvigioni M, Vecchione A, et al. Delivery mode shapes the composition of the lower airways microbiota in newborns[J]. Front Cell Infect Microbiol, 2021, 11: 808390.
doi: 10.3389/fcimb.2021.808390 |
[19] |
Gomez-Gallego C, Garcia-Mantrana I, Salminen S, et al. The human milk microbiome and factors influencing its composition and activity[J]. Semin Fetal Neonatal Med, 2016, 21(6): 400-405.
doi: S1744-165X(16)30017-8 pmid: 27286644 |
[20] |
Chen C, Yin Q, Wu H, et al. Different effects of premature infant formula and breast milk on intestinal microecological development in premature infants[J]. Front Microbiol, 2019, 10: 3020.
doi: 10.3389/fmicb.2019.03020 pmid: 32010090 |
[21] |
Huang J, Zhang L, Tang J, et al. Human milk as a protective factor for bronchopulmonary dysplasia: a systematic review and meta-analysis[J]. Arch Dis Child Fetal Neonatal Ed, 2019, 104(2): F128-F136.
doi: 10.1136/archdischild-2017-314205 |
[22] |
Chen W, Lo YC, Huang PH, et al. Increased antibiotic exposure in early life is associated with adverse outcomes in very low birth weight infants[J]. J Chin Med Assoc, 2022, 85(9): 939-943.
doi: 10.1097/JCMA.0000000000000749 |
[23] |
Willis KA, Siefker DT, Aziz MM, et al. Perinatal maternal antibiotic exposure augments lung injury in offspring in experimental bronchopulmonary dysplasia[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(2): L407-L418.
doi: 10.1152/ajplung.00561.2018 |
[24] |
Ran X, He Y, Ai Q, et al. Effect of antibiotic-induced intestinal dysbacteriosis on bronchopulmonary dysplasia and related mechanisms[J]. J Transl Med, 2021, 19(1): 155.
doi: 10.1186/s12967-021-02794-6 pmid: 33874953 |
[25] |
Rasmussen MA, Thorsen J, Dominguez-Bello MG, et al. Ecological succession in the vaginal microbiota during pregnancy and birth[J]. ISME J, 2020, 14(9): 2325-2335.
doi: 10.1038/s41396-020-0686-3 pmid: 32488167 |
[26] |
Lehtimäki J, Thorsen J, Rasmussen MA, et al. Urbanized microbiota in infants, immune constitution, and later risk of atopic diseases[J]. J Allergy Clin Immunol, 2021, 148(1): 234-243.
doi: 10.1016/j.jaci.2020.12.621 pmid: 33338536 |
[27] | Schoos AM, Kragh M, Ahrens P, et al. Season of birth impacts the neonatal nasopharyngeal microbiota[J]. Children (Basel), 2020, 7(5): 45. |
[28] |
Rice JL, McGrath-Morrow SA, Collaco JM. Indoor air pollution sources and respiratory symptoms in bronchopulmonary dysplasia[J]. J Pediatr, 2020, 222:85-90.
doi: 10.1016/j.jpeds.2020.03.010 |
[29] |
Brewer MR, Maffei D, Cerise J, et al. Determinants of the lung microbiome in intubated premature infants at risk for bronchopulmonary dysplasia[J]. J Matern Fetal Neonatal Med, 2021, 34(19):3220-3226.
doi: 10.1080/14767058.2019.1681961 |
[30] |
Wang HC, Tsai MH, Chu SM, et al. Clinical characteristics and outcomes of neonates with polymicrobial ventilator-associated pneumonia in the intensive care unit[J]. BMC Infect Dis, 2021, 21(1):965.
doi: 10.1186/s12879-021-06673-9 |
[31] | Van Mechelen K, Meeus M, Matheeussen V, et al. Association between maternal cervicovaginal swab positivity for Ureaplasma spp. or other microorganisms and neonatal respiratory outcome and mortality[J]. J Perinatol, 2021, 41(6): 1-11. |
[32] |
Polglase GR, Dalton RG, Nitsos I, et al. Pulmonary vascular and alveolar development in preterm lambs chronically colonized with Ureaplasma parvum[J]. Am J Physiol Lung Cell Mol Physiol, 2010, 299(2): L232-L241.
doi: 10.1152/ajplung.00369.2009 |
[33] |
Colaizy TT, Morris CD, Lapidus J, et al. Detection of ureaplasma DNA in endotracheal samples is associated with bronchopulmonary dysplasia after adjustment for multiple risk factors[J]. Pediatr Res, 2007, 61(5 Pt 1):578-583.
pmid: 17413863 |
[34] |
Cui TX, Brady AE, Fulton CT, et al. CCR2 mediates chronic LPS-induced pulmonary inflammation and hypoalveolarization in a Murine Model of bronchopulmonary dysplasia[J]. Front Immunol, 2020, 11:579628.
doi: 10.3389/fimmu.2020.579628 |
[35] |
Piersigilli F, Bhandari V. Metabolomics of bron-chopulmonary dysplasia[J]. Clin Chim Acta, 2020, 500: 109-114.
doi: S0009-8981(19)32057-1 pmid: 31689411 |
[36] |
Gentle SJ, Lal CV. Predicting BPD: lessons learned from the airway microbiome of preterm infants[J]. Front Pediatr, 2019, 7: 564.
doi: 10.3389/fped.2019.00564 pmid: 32117822 |
[37] |
Xu Y, Huang Y, Shen Z, et al. The nasal microbiome of predicting bronchopulmonary dysplasia in preterm infants[J]. Sci Rep, 2022, 12(1): 7727.
doi: 10.1038/s41598-022-10770-3 pmid: 35546156 |
[38] |
Xu Q, Yu J, Liu D, et al. The airway microbiome and metabolome in preterm infants: potential biomarkers of bronchopulmonary dysplasia[J]. Front Pediatr, 2022, 10: 862157.
doi: 10.3389/fped.2022.862157 |
[39] |
Lauer T, Behnke J, Oehmke F, et al. Bacterial colonization within the first six weeks of life and pulmonary outcome in preterm infants <1000 g[J]. J Clin Med, 2020, 9(7):2240.
doi: 10.3390/jcm9072240 |
[40] |
Qu Y, Guo S, Liu Y, et al. Association between probiotics and bronchopulmonary dysplasia in preterm infants[J]. Sci Rep, 2021, 11(1): 17060.
doi: 10.1038/s41598-021-96489-z pmid: 34426616 |
[41] |
Chen WY, Lo YC, Huang PH, et al. Increased antibiotic exposure in early life is associated with adverse outcomes in very low birth weight infants[J]. J Chin Med Assoc, 2022, 85(9):939-943.
doi: 10.1097/JCMA.0000000000000749 |
[42] |
Li Y, He L, Zhao Q, et al. Microbial and metabolic profiles of bronchopulmonary dysplasia and therapeutic effects of potential probiotics Limosilactobacillus reuteri and Bifidobacterium bifidum[J]. J Appl Microbiol, 2022, 133(2): 908-921.
doi: 10.1111/jam.15602 |
[43] |
Freeman AE, Willis KA, Qiao L, et al. Microbial induced redox imbalance in the neonatal lung is ameliorated by live biotherapeutics[J]. Am J Respir Cell Mol Biol, 2023, 68(3):267-268.
doi: 10.1165/rcmb.2021-0508OC |
[44] |
Yang K, Dong W. Perspectives on probiotics and bronchopulmonary dysplasia[J]. Front Pediatr, 2020, 8:570247.
doi: 10.3389/fped.2020.570247 |
[1] | ZHAO Caiyan, SUN Xuan, CHEN Ling. Advances in studies on risk factors and predictors of patent hemodynamically significant ductus arteriosus in premature infants [J]. Journal of Clinical Pediatrics, 2023, 41(6): 475-479. |
[2] | WANG Liping, YOU You, YIN Zhanghua, WANG Yiwen, CHEN Sun, XIA Hongping. Pulmonary vein stenosis in extremely premature infants with bronchopulmonary dysplasia: a report of two cases [J]. Journal of Clinical Pediatrics, 2023, 41(4): 289-293. |
[3] | LU Xiaoyan, CHEN Shaohong, CHEN Yingying, ZHOU Wenjun, ZHOU Chan, SONG Yan, LI Luquan, TANG Wenyan. Related factors affecting delayed thyroid stimulating hormone elevation in preterm infants with gestational age <34 weeks [J]. Journal of Clinical Pediatrics, 2023, 41(10): 675-679. |
[4] | ZHA Xinyi, WANG Yiwen, MAO Pengliang, CHEN Mingyan, JIANG Wei, WANG Huawei, HU Xuefeng, SHI Liping, ZHU Xueping, QIAN Jihong. Efficacy and safety of lactase additive in preterm infants with lactose intolerance: a prospective, multi-center, randomized controlled trial [J]. Journal of Clinical Pediatrics, 2023, 41(1): 34-41. |
[5] | XIA Hongping, ZHANG Yongjun. Phenotypic characteristics and treatment strategies of severe bronchopulmonary dysplasia [J]. Journal of Clinical Pediatrics, 2022, 40(6): 401-406. |
[6] | DING Yingxue. Phenotypic evolution of bronchopulmonary dysplasia in premature infants [J]. Journal of Clinical Pediatrics, 2022, 40(6): 407-412. |
[7] | LI Fang, LIU Liting. Concerns about diagnosis and treatment of bronchopulmonary dysplasia [J]. Journal of Clinical Pediatrics, 2022, 40(6): 413-419. |
[8] | XU Ruzheng, JIANG Xu, SUN Bin. Clinical characteristics of bronchopulmonary dysplasia in preterm infants with gestational age <32 weeks [J]. Journal of Clinical Pediatrics, 2022, 40(6): 420-424. |
[9] | YU Yanliang, CHEN Xueyu, FAN Guoqing, CHEN Chun, LIN Bingchun, ZHAO Jie, HUANG Zhifeng, YANG Chuanzhong. Effect of L-carnitine on lipid and bilirubin metabolism in extremely premature infants [J]. Journal of Clinical Pediatrics, 2022, 40(6): 431-435. |
[10] | LI Zhe, ZHU Xiaobo, XUE Jiang. Application value of spontaneous breathing trial in the extubation of premature infants [J]. Journal of Clinical Pediatrics, 2022, 40(10): 755-759. |
[11] | YU Yi, SU Wen, ZHANG Qingqing, et al. Role of intestinal microecology in the occurrence and prevention of food allergies [J]. Journal of Clinical Pediatrics, 2021, 39(8): 636-. |
[12] | LIU Xiao, CHEN Pingyang, TAN Xin, et al. A retrospective study of non-Magill forceps-assisted less invasive pulmonary surfactant administration (LISA) technique [J]. Journal of Clinical Pediatrics, 2021, 39(6): 415-. |
[13] | LI Ruiwen. Research progress of diagnostic criteria for bronchopulmonary dysplasia [J]. Journal of Clinical Pediatrics, 2021, 39(4): 308-. |
[14] | WEI Jia. Progress in research on neuroprotective effect of sirtuin 3 in regulating microglia against brain injury in premature infants [J]. Journal of Clinical Pediatrics, 2021, 39(2): 152-. |
[15] | YUAN Wenjie, WU Ming, XU Yan, et al. Value of aEEG combined with AOPP and sLOX-1 in the early diagnosis of brain injury in premature infants [J]. Journal of Clinical Pediatrics, 2020, 38(11): 842-. |
|