Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (10): 708-714.doi: 10.12372/jcp.2023.22e1112
• Literature Review • Previous Articles Next Articles
Reviewer: ZHANG Zaiyu, WU Yuxin, Reviser: LIANG Ping
Received:
2022-08-15
Online:
2023-10-15
Published:
2023-10-08
ZHANG Zaiyu, WU Yuxin, LIANG Ping. Research progress on characterization and therapeutics for recurrent medulloblastoma in children[J].Journal of Clinical Pediatrics, 2023, 41(10): 708-714.
"
临床试验名称 | 年龄 | 放射治疗方案 | 化学治疗方案 | 复发率/% | 复发中位 时间/a |
---|---|---|---|---|---|
HIT-SKK’2000[ | <4岁 | 化疗后完全缓解则不接受放疗 | CTX+VCR+MTX+CBP+VP-16+ i.vc.MTX | 37.5 | 1.3 |
Head Start I-II[ | <3岁 | 不接受放疗 | 诱导:CTX+VCR+VP-16+CDDP 巩固:CBP+VP-16+Thiotepa | 33.3 | NA |
HIT-SIOP-PNET4[ | 4~21岁 | 标准方案:全脑脊髓23.4 Gy+后颅窝54 Gy 超分割方案:全脑脊髓36 Gy+后颅窝60 Gy+瘤床68 Gy | CDDP+CCNU+VCR | 19.5 | 2.2 |
SJMB96[ | 3~21岁 | 标危组:全脑脊髓23.4 Gy+后颅窝36 Gy+瘤床55.8 Gy 高危组:全脑脊髓36~39.6 Gy+瘤床55.8 Gy+转移病灶50.4 Gy | VCR+CTX+CDDP | 标危组/高危组: 15.1/29.21) | 标危组/高危组: 2.0/1.62) |
SJMB03[ | 3~21岁 | 标危组:全脑脊髓23.4 Gy+瘤床55.8 Gy 高危组:全脑脊髓36~39.6 Gy+瘤床55.8~59.4 Gy | VCR+CTX+CDDP | 标危组/高危组: 16.3/34.01) | 标危组/高危组: 2.0/1.32) |
SJYC07[ | <3岁 | 不接受放疗 | 诱导:MTX+VCR+CTX+CDDP 巩固:CTX+CBP+VP-16 维持:CTX+Topotecan+Erlotinib | 65.83) | 0.7 |
COG-P9934[ | 8月龄~3岁 | 化疗后完全缓解则不接受放疗 | 诱导:CTX+VCR+VP-16+CDDP 巩固:CBP+Thiotepa | 39.23) | NA |
[1] |
Ostrom QT, Cioffi G, Waite K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018[J]. Neuro Oncol, 2021, 23(12 Suppl 2): iii1-iii105.
doi: 10.1093/neuonc/noab200 |
[2] |
Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251.
doi: 10.1093/neuonc/noab106 |
[3] |
Mynarek M, von Hoff K, Pietsch T, et al. Nonmetastatic medulloblastoma of early childhood: results from the prospective clinical trial HIT-2000 and an extended validation cohort[J]. J Clin Oncol, 2020, 38(18): 2028-2040.
doi: 10.1200/JCO.19.03057 pmid: 32330099 |
[4] |
Sabel M, Fleischhack G, Tippelt S, et al. Relapse patterns and outcome after relapse in standard risk medulloblastoma: a report from the HIT-SIOP-PNET4 study[J]. J Neurooncol, 2016, 129(3): 515-524.
doi: 10.1007/s11060-016-2202-1 |
[5] |
Kumar R, Smith KS, Deng M, et al. Clinical outcomes and patient-matched molecular composition of relapsed medulloblastoma[J]. J Clin Oncol, 2021, 39(7): 807-821.
doi: 10.1200/JCO.20.01359 pmid: 33502920 |
[6] |
Müller K, Mynarek M, Zwiener I, et al. Postponed is not canceled: role of craniospinal radiation therapy in the management of recurrent infant medulloblastoma--an experience from the HIT-REZ 1997 & 2005 studies[J]. Int J Radiat Oncol Biol Phys, 2014, 88(5): 1019-1024.
doi: 10.1016/j.ijrobp.2014.01.013 |
[7] |
Levy AS, Krailo M, Chi S, et al. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: report of a COG randomized phase II screening trial[J]. Pediatr Blood Cancer, 2021, 68(8): e29031.
doi: 10.1002/pbc.v68.8 |
[8] |
Gaab C, Adolph JE, Tippelt S, et al. Local and systemic therapy of recurrent medulloblastomas in children and adolescents: results of the P-HIT-REZ 2005 study[J]. Cancers (Basel), 2022, 14(3):471.
doi: 10.3390/cancers14030471 |
[9] |
Gajjar A, Chintagumpala M, Ashley D, et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial[J]. Lancet Oncol, 2006, 7(10): 813-820.
doi: 10.1016/S1470-2045(06)70867-1 pmid: 17012043 |
[10] |
Lannering B, Rutkowski S, Doz F, et al. Hyperfractionated versus conventional radiotherapy followed by chemo-therapy in standard-risk medulloblastoma: results from the randomized multicenter HIT-SIOP PNET 4 trial[J]. J Clin Oncol, 2012, 30(26): 3187-3193.
doi: 10.1200/JCO.2011.39.8719 pmid: 22851561 |
[11] |
Dhall G, Grodman H, Ji L, et al. Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the “head start” I and II protocols[J]. Pediatr Blood Cancer, 2008, 50(6): 1169-1175.
doi: 10.1002/(ISSN)1545-5017 |
[12] |
von Bueren AO, von Hoff K, Pietsch T, et al. Treatment of young children with localized medulloblastoma by chemotherapy alone: results of the prospective, multicenter trial HIT 2000 confirming the prognostic impact of histology[J]. Neuro Oncol, 2011, 13(6): 669-679.
doi: 10.1093/neuonc/nor025 |
[13] |
Ashley DM, Merchant TE, Strother D, et al. Induction chemotherapy and conformal radiation therapy for very young children with nonmetastatic medulloblastoma: children’s oncology group study P9934[J]. J Clin Oncol, 2012, 30(26): 3181-3186.
doi: 10.1200/JCO.2010.34.4341 pmid: 22851568 |
[14] |
Robinson GW, Rudneva VA, Buchhalter I, et al. Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial[J]. Lancet Oncol, 2018, 19(6): 768-784.
doi: S1470-2045(18)30204-3 pmid: 29778738 |
[15] |
Johnston DL, Keene D, Strother D, et al. Survival following tumor recurrence in children with medullo-blastoma[J]. J Pediatr Hematol Oncol, 2018, 40(3): e159-e163.
doi: 10.1097/MPH.0000000000001095 |
[16] | Nobre L, Zapotocky M, Khan S, et al. Pattern of relapse and treatment response in WNT-activated medulloblastoma[J]. Cell Rep Med, 2020, 1(3):100038 |
[17] |
Huybrechts S, Le Teuff G, Tauziède-Espariat A, et al. Prognostic clinical and biologic features for overall survival after relapse in childhood medulloblastoma[J]. Cancers (Basel), 2020, 13(1):53.
doi: 10.3390/cancers13010053 |
[18] |
Koschmann C, Bloom K, Upadhyaya S, et al. Survival after relapse of medulloblastoma[J]. J Pediatr Hematol Oncol, 2016, 38(4): 269-273.
doi: 10.1097/MPH.0000000000000547 pmid: 26907655 |
[19] |
Huang PI, Lin SC, Lee YY, et al. Large cell/anaplastic medulloblastoma is associated with poor prognosis-a retrospective analysis at a single institute[J]. Childs Nerv Syst, 2017, 33(8): 1285-1294.
doi: 10.1007/s00381-017-3435-9 |
[20] |
Aboian MS, Kline CN, Li Y, et al. Early detection of recurrent medulloblastoma: the critical role of diffusion-weighted imaging[J]. Neurooncol Pract, 2018, 5(4): 234-240.
doi: 10.1093/nop/npx036 pmid: 30402262 |
[21] |
Grassberger C, Shinnick D, Yeap BY, et al. Circulating lymphocyte counts early during radiation therapy are associated with recurrence in pediatric medulloblastoma[J]. Int J Radiat Oncol Biol Phys, 2021, 110(4): 1044-1052.
doi: 10.1016/j.ijrobp.2021.01.035 |
[22] |
Du S, Yang S, Zhao X, et al. Clinical characteristics and outcome of children with relapsed medulloblastoma: a retrospective study at a single center in China[J]. J Pediatr Hematol Oncol, 2018, 40(8): 598-604.
doi: 10.1097/MPH.0000000000001241 pmid: 29927794 |
[23] |
Hill RM, Kuijper S, Lindsey JC, et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease[J]. Cancer cell, 2015, 27(1): 72-84.
doi: 10.1016/j.ccell.2014.11.002 pmid: 25533335 |
[24] |
Richardson S, Hill RM, Kui C, et al. Emergence and maintenance of actionable genetic drivers at medulloblastoma relapse[J]. Neuro Oncol, 2022, 24(1): 153-165.
doi: 10.1093/neuonc/noab178 |
[25] |
Gajjar A, Robinson GW, Smith KS, et al. Outcomes by clinical and molecular features in children with medulloblastoma treated with risk-adapted therapy: results of an international phase III trial (SJMB03)[J]. J Clin Oncol, 2021, 39(7): 822-835.
doi: 10.1200/JCO.20.01372 pmid: 33405951 |
[26] |
Hill RM, Richardson S, Schwalbe EC, et al. Time, pattern, and outcome of medulloblastoma relapse and their association with tumour biology at diagnosis and therapy: a multicentre cohort study[J]. Lancet Child Adolesc Health, 2020, 4(12): 865-874.
doi: 10.1016/S2352-4642(20)30246-7 pmid: 33222802 |
[27] |
Ricklefs FL, Fritzsche F, Winkler B, et al. Relapse of a group 4 medulloblastoma after 18 years as proven by histology and DNA methylation profiling[J]. Childs Nerv Syst, 2019, 35(6): 1029-1033.
doi: 10.1007/s00381-019-04086-3 |
[28] | Tsang DS, Sarhan N, Ramaswamy V, et al. Re-irradiation for children with recurrent medulloblastoma in Toronto, Canada: a 20-year experience[J]. Neuro-oncol, 2019, 145(1): 107-114. |
[29] |
Baroni LV, Freytes C, Fernández Ponce N, et al. Craniospinal irradiation as part of re-irradiation for children with recurrent medulloblastoma[J]. J Neurooncol, 2021, 155(1): 53-61.
doi: 10.1007/s11060-021-03842-3 |
[30] |
Phi JH, Park AK, Lee S, et al. Genomic analysis reveals secondary glioblastoma after radiotherapy in a subset of recurrent medulloblastomas[J]. Acta Neuropathol, 2018, 135(6): 939-953.
doi: 10.1007/s00401-018-1845-8 pmid: 29644394 |
[31] | Zhao M, Wang X, Fu X, et al. Bevacizumab and stereotactic radiosurgery achieved complete response for pediatric recurrent medulloblastoma[J]. J Cancer Res Ther, 2018, 14(Supplement): S789-S792. |
[32] |
Rao AD, Rashid AS, Chen Q, et al. Reirradiation for recurrent pediatric central nervous system malignancies: a multi-institutional review[J]. Int J Radiat Oncol Biol Phys, 2017, 99(3): 634-641.
doi: 10.1016/j.ijrobp.2017.07.026 |
[33] |
Napieralska A, Brąclik I, Radwan M, et al. Radiosurgery or hypofractionated stereotactic radiotherapy after craniospinal irradiation in children and adults with medulloblastoma and ependymoma[J]. Childs Nerv Syst, 2019, 35(2): 267-275.
doi: 10.1007/s00381-018-4010-8 |
[34] | Osorio DS, Dunkel IJ, Cervone KA, et al. Tandem thiotepa with autologous hematopoietic cell rescue in patients with recurrent, refractory, or poor prognosis solid tumor malignancies[J]. Pediatr Blood Cancer, 2018, 65(1). doi: 10.1002/pbc.26776. |
[35] | Slavc I, Peyrl A, Gojo J, et al. MMbcl-43. recurrent medulloblastoma - long-term survival with a “memmat” based antiangiogenic approach[J]. Neuro-oncology, 2020, 22(Supplement_3): iii397-iii397. |
[36] |
Pajtler KW, Tippelt S, Siegler N, et al. Intraventricular etoposide safety and toxicity profile in children and young adults with refractory or recurrent malignant brain tumors[J]. J Neurooncol, 2016, 128(3): 463-471.
doi: 10.1007/s11060-016-2133-x |
[37] |
Bonney PA, Santucci JA, Maurer AJ, et al. Dramatic response to temozolomide, irinotecan, and bevacizumab for recurrent medulloblastoma with widespread osseous metastases[J]. J Clin Neurosci, 2016, 26: 161-163.
doi: 10.1016/j.jocn.2015.10.022 pmid: 26777082 |
[38] |
Schiavetti A, Varrasso G, Mollace MG, et al. Bevaci-zumab-containing regimen in relapsed/progressed brain tumors: a single-institution experience[J]. Childs Nerv Syst, 2019, 35(6): 1007-1012.
doi: 10.1007/s00381-019-04117-z |
[39] |
Robinson GW, Orr BA, Wu G, et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032[J]. J Clin Oncol, 2015, 33(24): 2646-2654.
doi: 10.1200/JCO.2014.60.1591 pmid: 26169613 |
[40] |
Kieran MW, Chisholm J, Casanova M, et al. Phase I study of oral sonidegib (LDE225) in pediatric brain and solid tumors and a phase II study in children and adults with relapsed medulloblastoma[J]. Neuro Oncol, 2017, 19(11): 1542-1552.
doi: 10.1093/neuonc/nox109 |
[41] | Pereira V, Torrejon J, Kariyawasam D, et al. Clinical and molecular analysis of smoothened inhibitors in sonic hedgehog medulloblastoma[J]. Neurooncol Adv, 2021, 3(1): vdab097. |
[42] |
Cook Sangar ML, Genovesi LA, Nakamoto MW, et al. Inhibition of CDK4/6 by palbociclib significantly extends survival in medulloblastoma patient-derived xenograft mouse models[J]. Clin Cancer Res, 2017, 23(19): 5802-5813.
doi: 10.1158/1078-0432.CCR-16-2943 pmid: 28637687 |
[43] |
Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment[J]. J Clin Oncol, 2006, 24(11): 1770-1783.
doi: 10.1200/JCO.2005.03.7689 pmid: 16603719 |
[44] |
Burkhart DL, Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene[J]. Nat Rev Cancer, 2008, 8(9): 671-682.
doi: 10.1038/nrc2399 pmid: 18650841 |
[45] |
Bockmayr M, Mohme M, Klauschen F, et al. Subgroup-specific immune and stromal microenvironment in medulloblastoma[J]. Oncoimmunology, 2018, 7(9): e1462430.
doi: 10.1080/2162402X.2018.1462430 |
[46] |
Diao S, Gu C, Zhang H, et al. Immune cell infiltration and cytokine secretion analysis reveal a non-inflammatory microenvironment of medulloblastoma[J]. Oncol Lett, 2020, 20(6): 397.
doi: 10.3892/ol.2020.12260 pmid: 33193857 |
[47] |
Pham CD, Flores C, Yang C, et al. Differential immune microenvironments and response to immune checkpoint blockade among molecular subtypes of murine medulloblastoma[J]. Clin Cancer Res, 2016, 22(3): 582-595.
doi: 10.1158/1078-0432.CCR-15-0713 pmid: 26405194 |
[48] |
Donovan LK, Delaidelli A, Joseph SK, et al. Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma[J]. Nat Med, 2020, 26(5): 720-731.
doi: 10.1038/s41591-020-0827-2 pmid: 32341580 |
[49] |
Castriconi R, Dondero A, Negri F, et al. Both CD133+ and CD133- medulloblastoma cell lines express ligands for triggering NK receptors and are susceptible to NK-mediated cytotoxicity[J]. Eur J Immunol, 2007, 37(11): 3190-3196.
doi: 10.1002/eji.200737546 pmid: 17918205 |
[50] |
Khatua S, Cooper LJN, Sandberg DI, et al. Phase I study of intraventricular infusions of autologous ex vivo expanded NK cells in children with recurrent medulloblastoma and ependymoma[J]. Neuro Oncol, 2020, 22(8): 1214-1225.
doi: 10.1093/neuonc/noaa047 |
[51] | Kramer K, Pandit-Taskar N, Humm JL, et al. A phase II study of radioimmunotherapy with intraventricular (131) I-3F8 for medulloblastoma[J]. Pediatr Blood Cancer, 2018, 65(1):10.1002. |
[52] |
Liu Y, Yuelling LW, Wang Y, et al. Astrocytes promote medulloblastoma progression through hedgehog secretion[J]. Cancer Res, 2017, 77(23): 6692-6703.
doi: 10.1158/0008-5472.CAN-17-1463 pmid: 28986380 |
[53] |
Zhang L, He X, Liu X, et al. Single-Cell transcriptomics in medulloblastoma reveals tumor-initiating progenitors and oncogenic cascades during tumorigenesis and relapse[J]. Cancer Cell, 2019, 36(3): 302-318.
doi: S1535-6108(19)30336-8 pmid: 31474569 |
[54] |
Yao M, Ventura PB, Jiang Y, et al. Astrocytic trans-differentiation completes a multicellular paracrine feedback loop required for medulloblastoma tumor growth[J]. Cell, 2020, 180(3): 502-520.
doi: S0092-8674(19)31386-8 pmid: 31983537 |
[55] |
Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells[J]. Nature, 2004, 432(7015): 396-401.
doi: 10.1038/nature03128 |
[56] |
Garg N, Bakhshinyan D, Venugopal C, et al. CD133(+) brain tumor-initiating cells are dependent on STAT3 signaling to drive medulloblastoma recurrence[J]. Oncogene, 2017, 36(5): 606-617.
doi: 10.1038/onc.2016.235 pmid: 27775079 |
[57] |
Bakhshinyan D, Adile AA, Liu J, et al. Temporal profiling of therapy resistance in human medulloblastoma identifies novel targetable drivers of recurrence[J]. Sci Adv, 2021, 7(50): eabi5568.
doi: 10.1126/sciadv.abi5568 |
[58] |
Leung C, Lingbeek M, Shakhova O, et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas[J]. Nature, 2004, 428(6980): 337-341.
doi: 10.1038/nature02385 |
[59] |
Bakhshinyan D, Venugopal C, Adile AA, et al. BMI1 is a therapeutic target in recurrent medulloblastoma[J]. Oncogene, 2019, 38(10): 1702-1716.
doi: 10.1038/s41388-018-0549-9 pmid: 30348991 |
[60] |
Guo D, Wang Y, Cheng Y, et al. Tumor cells generate astrocytelike cells that contribute to SHH-driven medulloblastoma relapse[J]. J Exp Med, 2021, 218(9): e20202350.
doi: 10.1084/jem.20202350 |
[1] | ZOU Liping. Childhood encephalopathy: a group of diseases associated with various diseases [J]. Journal of Clinical Pediatrics, 2023, 41(9): 641-643. |
[2] | ZHANG Weihua, ZOU Liping, REN Haitao, GUAN Hongzhi. Beware of the pitfalls in diagnosis and treatment of autoimmune encephalitis in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 644-649. |
[3] | JI Taoyun. Prospect of gene therapy for developmental and epileptic encephalopathy [J]. Journal of Clinical Pediatrics, 2023, 41(9): 650-655. |
[4] | HOU Chi, CHEN Wenxiong, LIAO Yinting, WU Wenxiao, TIAN Yang, ZHU Haixia, PENG Bingwei, ZENG Yiru, WU Wenlin, CHEN Zongzong, LI Xiaojing. Clinical analysis of autoimmune glial fibrillary acidic protein astrocytopathy in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 656-660. |
[5] | YANG Yating, CAI Yuehao, FANG Qiong, CHEN Lang, CHEN Qiaobin, LIN Zhi, WU Feifei, LIN Meng. Clinical analysis of idiopathic and symptomatic occipital lobe epilepsy in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 668-673. |
[6] | HOU Ruolin, WU Jing, LI Ling. Pediatric autoimmune encephalitis with brain MRI showing meningeal thickening and enhancement [J]. Journal of Clinical Pediatrics, 2023, 41(9): 674-679. |
[7] | WU Yuefang, SUN Yanling, WU Wanshui, DU Shuxu, LI Miao, SUN Liming. Analysis of prognostic factors and survival status of group 4 medulloblastoma in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 686-691. |
[8] | SUN Juan, LI Haiying, JIA Peisheng, WANG Huaili. Clinical analysis of fulminant myocarditis in 12 children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 692-696. |
[9] | Reviewer: WANG Chenhui, Reviser: YANG Hui. Research progress on early screening and diagnosis of Crohn's disease in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 708-714. |
[10] | SHEN Nan, DU Bailu. Strategies for the diagnosis, treatment, and management of invasive fungal infections in children with hematologic neoplasms [J]. Journal of Clinical Pediatrics, 2023, 41(8): 571-577. |
[11] | XU Beixue, LIU Quanbo. Clinical analysis of 195 children with invasive pulmonary fungal infection [J]. Journal of Clinical Pediatrics, 2023, 41(8): 584-588. |
[12] | CHEN Hongyu, LIU Zihao, WANG Heping, LIAO Cuijuan, LI Li, WANG Wenjian, LAI Jianwei. Role of nontypeable Haemophilus influenzae biofilms in chronic pulmonary infection in children [J]. Journal of Clinical Pediatrics, 2023, 41(8): 589-593. |
[13] | KANG Lei, GUO Fang, LI Lifang, BAI Xinfeng, CHENG Caiyun, XU Meixian. Value of metagenomic next-generation sequencing in children with visceral leishmaniasis associated with hemolytic histiocytosis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 594-598. |
[14] | YU Liting, SHEN Xingwei, WANG Zhuo, ZHANG Shunguo, GAO Yijin. Efficacy and safety of fosaprepitant in the prevention of highly emetogenic chemotherapy-related nausea and vomiting in pediatric patients with cancer [J]. Journal of Clinical Pediatrics, 2023, 41(8): 604-609. |
[15] | SUN Zhicai, LIU Yuling, LI Xiaolin, PAN Xiaofen. Clinical analysis of 15 children with primary nephrotic syndrome complicated with adrenal crisis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 610-612. |
|