临床儿科杂志 ›› 2025, Vol. 43 ›› Issue (3): 226-232.doi: 10.12372/jcp.2025.24e0499
收稿日期:
2024-05-16
录用日期:
2024-08-12
出版日期:
2025-03-15
发布日期:
2025-02-27
通讯作者:
吴捷 电子信箱:基金资助:
JIA Shuangzhen, KONG Yan, LIU Qian-chao, ZHU Ailin, WU Jie()
Received:
2024-05-16
Accepted:
2024-08-12
Published:
2025-03-15
Online:
2025-02-27
摘要:
儿童炎症性肠病(IBD)是一种慢性复发性肠道炎性疾病,其病因不明,发病机制复杂,目前在诊治方面仍然面临挑战。IBD严重影响患儿的生长发育和生活质量,并可能对患儿的心理和社会行为产生不良影响,给社会带来巨大的经济负担。近年来,我国儿童IBD的发病率呈上升趋势,引起了儿科医师的高度重视。建立儿童IBD的精准治疗新模式成为国内外儿科医师和学者的目标。精准医学已被证明在肿瘤、新生儿遗传病的早期筛查与诊断等领域中发挥了重要作用,同时也为儿童IBD的治疗提供了新的方法和视角。本文就当前精准治疗在儿童IBD中的应用情况,阐明精准治疗在儿童IBD治疗中的作用。
贾双珍, 孔琰, 刘前超, 朱艾琳, 吴捷. 儿童炎症性肠病的精准治疗研究与应用[J]. 临床儿科杂志, 2025, 43(3): 226-232.
JIA Shuangzhen, KONG Yan, LIU Qian-chao, ZHU Ailin, WU Jie. Application of precision therapy in pediatric inflammatory bowel disease[J]. Journal of Clinical Pediatrics, 2025, 43(3): 226-232.
[1] | El-Matary W, Carroll MW, Deslandres C, et al. The 2023 impact of inflammatory bowel disease in Canada: Special Populations-Children and Adolescents with IBD[J]. J Can Assoc Gastroenterol, 2023, 6(2): S35-S44. |
[2] |
Benchimol EI, Bernstein CN, Bitton A, et al. Trends in epidemiology of pediatric inflammatory bowel disease in Canada: distributed network analysis of multiple population-based provincial health administrative databases[J]. Am J Gastroenterol, 2017, 112(7): 1120-1134.
doi: 10.1038/ajg.2017.97 pmid: 28417994 |
[3] |
Fabián O, Kamaradová K. Morphology of inflammatory bowel diseases (IBD)[J]. Cesk Patol, 2022, 58(1): 27-37.
pmid: 35387455 |
[4] | Berinstein JA, Aintabi D, Higgins PDR. In-hospital management of inflammatory bowel disease[J]. Curr Opin Gastroenterol, 2023, 39(4): 274-286. |
[5] | Cho J, Kim S, Yang DH, et al. Mucosal immunity related to FOXP3+ regulatory T cells, Th17 cells and cytokines in pediatric inflammatory bowel disease[J]. J Korean Med Sci, 2018, 33(52): e336. |
[6] | Yan JB, Luo MM, Chen ZY, et al. The function and role of the Th17/Treg cell balance in inflammatory bowel disease[J]. J Immunol Res, 2020: 8813558. |
[7] | Gomez-Bris R, Saez A, Herrero-Fernandez B, et al. CD4 T-cell subsets and the pathophysiology of inflammatory bowel disease[J]. Int J Mol Sci, 2023, 24(3): 2696. |
[8] | Gao H, Liu R, Huang H, et al. Susceptibility gene profiling elucidates the pathogenesis of inflammatory bowel disease and provides precision medicine[J]. Clin Transl Med, 2023, 13(9): e1404. |
[9] | O'Brien CL, Summers KM, Martin NM, et al. The relationship between extreme inter-individual variation in macrophage gene expression and genetic susceptibility to inflammatory bowel disease[J]. Hum Genet, 2024, 143(3): 233-261. |
[10] | White Z, Cabrera I, Kapustka I, et al. Microbiota as key factors in inflammatory bowel disease[J]. Front Microbiol, 2023, 14: 1155388. |
[11] | Tani M, Shinzaki S, Asakura A, et al. Seasonal variations in gut microbiota and disease course in patients with inflammatory bowel disease[J]. PLoS One, 2023, 18(4): e0283880. |
[12] | Yan J, Wang L, Gu Y, et al. Dietary patterns and gut microbiota changes in inflammatory bowel disease: current insights and future challenges[J]. Nutrients, 2022, 14(19): 4003. |
[13] | McCoy J, Miller MR, Watson M, et al. Paediatric obesity and Crohn's disease: a descriptive review of disease phenotype and clinical course[J]. Paediatr Child Health, 2023, 29(3): 158-162. |
[14] |
Ghione S, Sarter H, Fumery M, et al. Dramatic increase in incidence of ulcerative colitis and Crohn's disease (1988-2011): a population-based study of french adolescents[J]. Am J Gastroenterol, 2018, 113(2): 265-272.
doi: 10.1038/ajg.2017.228 pmid: 28809388 |
[15] | Wang XQ, Zhang Y, Xu CD, et al. Inflammatory bowel disease in Chinese children: a multicenter analysis over a decade from Shanghai[J]. Inflamm Bowel Dis, 2013, 19(2): 423-428. |
[16] | Mao R, Chen M. Precision medicine in IBD: genes, drugs, bugs and omics[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(2): 81-82. |
[17] |
Samuels A, Whaley KG, Minar P. Precision dosing of anti-TNF therapy in pediatric inflammatory bowel disease[J]. Curr Gastroenterol Rep, 2023, 25(11): 323-332.
doi: 10.1007/s11894-023-00895-4 pmid: 37695555 |
[18] | Leung PY, Lui R, Chien MM. Asia-Pacific's first position papers on pediatric inflammatory bowel disease: Tackling unique challenges in the region[J]. J Gastroenterol Hepatol, 2023, 38(4): 481-482. |
[19] | Bai BYH, Reppell M, Smaoui N, et al. Baseline expression of immune gene modules in blood is associated with primary response to anti-TNF therapy in Crohn's disease patients.[J]. J Crohns Colitis, 2024, 18(3):431-445. |
[20] |
van den Broek WWA, Ten Berg JM. Is a genotype-guided therapy the optimal strategy to personalize anti-thrombotic management in patients with acute coronary syndrome?[J]. Eur Heart J, 2022, 43: 4599-4600.
doi: 10.1093/eurheartj/ehac219 pmid: 35678582 |
[21] | Shi X, Zhang Y, Zhang Y, et al. Personalized antiplatelet therapy based on CYP2C19 genotypes in Chinese ACS patients undergoing PCI: a randomized controlled trial[J]. Front Cardiovasc Med, 2021, 8: 676954. |
[22] | Vuyyuru SK, Solitano V, Hogan M, et al. Efficacy and safety of IL-12/23 and IL-23 inhibitors for Crohn's disease: systematic review and meta-analysis[J]. Dig Dis Sci, 2023, 68(9): 3702-3713. |
[23] | Wyatt NJ, Watson H, Anderson CA, et al. Defining predictors of responsiveness to advanced therapies in Crohn's disease and ulcerative colitis: protocol for the IBD-RESPONSE and nested CD-meta RESPONSE prospective, multicentre, observational cohort study in precision medicine[J]. BMJ Open, 2024, 14(4): e073639. |
[24] |
Neurath MF. Current and emerging therapeutic targets for IBD[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(5): 269-278.
doi: 10.1038/nrgastro.2016.208 pmid: 28144028 |
[25] | Akhter N, Wilson A, Arefanian H, et al. Endoplasmic reticulum stress promotes the expression of TNF-α in THP-1 cells by mechanisms involving ROS/CHOP/HIF-1α and MAPK/NF-κB pathways[J]. Int J Mol Sci, 2023, 24(20): 15186. |
[26] | Chen J, Xu F, Ruan X, et al. Therapeutic targets for inflammatory bowel disease: proteome-wide Mendelian randomization and colocalization analyses[J]. EBioMedicine, 2023, 89: 104494. |
[27] | Lu H, Lin J, Xu C, et al. Cyclosporine modulates neutrophil functions via the SIRT6-HIF-1α-glycolysis axis to alleviate severe ulcerative colitis[J]. Clin Transl Med, 2021, 11(2): e334. |
[28] |
Viennois E, Baker MT, Xiao B, et al. Longitudinal study of circulating protein biomarkers in inflammatory bowel disease[J]. J Proteomics, 2015, 112: 166-179.
doi: 10.1016/j.jprot.2014.09.002 pmid: 25230104 |
[29] | Glapa-Nowak A, Szczepanik M, Banaszkiewicz A, et al. C-reactive protein/albumin ratio at diagnosis of pediatric inflammatory bowel disease: a retrospective multi-center study[J]. Med Sci Monit, 2022, 28: e937842. |
[30] | Essmann J, Keil C, Unruh O, et al. Fecal calprotectin is significantly linked to azathioprine metabolite concentrations in Crohn's disease[J]. Eur J Gastroenterol Hepatol, 2019, 31(1): 99-108. |
[31] | Lee JY, Hall JA, Kroehling L, et al. Serum amyloid a proteins induce pathogenic Th17 cells and promote inflammatory disease[J]. Cell, 2020, 183(7): 2036-2039. |
[32] |
Mello JDC, Gomes LEM, Silva JF, et al. The role of chemokines and adipokines as biomarkers of Crohn's disease activity: a systematic review of the literature[J]. Am J Transl Res, 2021, 13(8): 8561-8574.
pmid: 34539979 |
[33] |
Polosukhina D, Singh K, Asim M, et al. CCL11 exacerbates colitis and inflammation-associated colon tumorigenesis[J]. Oncogene, 2021, 40(47): 6540-6546.
doi: 10.1038/s41388-021-02046-3 pmid: 34625710 |
[34] | Kim Y, Park JH, Cho YR. Network-based approaches for disease-gene association prediction using protein-protein interaction networks[J]. Int J Mol Sci, 2022, 23(13): 7411. |
[35] | Jha K, Saha S, Singh H. Prediction of protein-protein interaction using graph neural networks[J]. Sci Rep, 2022, 12(1): 8360. |
[36] | Balogh OM, Benczik B, Horváth A, et al. Efficient link prediction in the protein-protein interaction network using topological information in a generative adversarial network machine learning model[J]. BMC Bioinformatics, 2022, 23(1): 78. |
[37] | Wang X, Zhu H, Jiang Y, et al. PRODeepSyn: predicting anticancer synergistic drug combinations by embedding cell lines with protein-protein interaction network[J]. Brief Bioinform, 2022, 23(2): bbab587. |
[38] |
Yuan Q, Chen J, Zhao H, et al. Structure-aware protein-protein interaction site prediction using deep graph convolutional network[J]. Bioinformatics, 2021, 38(1): 125-132.
doi: 10.1093/bioinformatics/btab643 pmid: 34498061 |
[39] | Fiocchi C, Dragoni G, Iliopoulos D, et al. Results of the seventh scientific workshop of ECCO: precision medicine in IBD-What, Why, and How[J]. J Crohns Colitis, 2021, 15(9): 1410-1430. |
[40] | LeVatte M, Keshteli AH, Zarei P, et al. Applications of metabolomics to precision nutrition[J]. Lifestyle Genom, 2022, 15(1): 1-9. |
[41] | Hart L, Verburgt CM, Wine E, et al. Nutritional therapies and their influence on the intestinal microbiome in pediatric inflammatory bowel disease[J]. Nutrients, 2021, 14(1): 4. |
[42] | Kasapoglu M, Yadavalli R, Nawaz S, et al. The impact of microbiome interventions on the progression and severity of inflammatory bowel disease: a systematic review[J]. Cureus, 2024, 16(5): e60786. |
[43] | Höyhtyä M, Korpela K, Saqib S, et al. Quantitative fecal microbiota profiles relate to therapy response during induction with tumor necrosis factor α antagonist infliximab in pediatric inflammatory bowel disease[J]. Inflamm Bowel Dis, 2023, 29(1): 116-124. |
[44] | Sitkin S, Pokrotnieks J. Targeted probiotics against bacterial-fungal biofilms: a new concept seems to bring us closer to microbiome-modulating therapy for inflammatory bowel disease[J]. Inflamm Bowel Dis, 2023, 29(11): e40-e41. |
[45] | Al Radi ZMA, Prins FM, Collij V, et al. Exploring the predictive value of gut microbiome signatures for therapy intensification in patients with inflammatory bowel disease: a 10-year follow-up study[J]. Inflamm Bowel Dis, 2024: izae064. |
[46] | Syed S, Boland BS, Bourke LT, et al. Challenges in IBD research 2024: precision medicine[J]. Inflamm Bowel Dis, 2024, 30(2): S39-S54. |
[47] |
Dart RJ, Ellul P, Scharl M, et al. Results of the seventh scientific workshop of ECCO: Precision Medicine in IBD - Challenges and Future Directions[J]. J Crohns Colitis, 2021, 15(9): 1407-1409.
doi: 10.1093/ecco-jcc/jjab049 pmid: 33783484 |
[1] | 郝创利, 蒋吴君. COVID-19疫情对儿童呼吸道感染病原流行病学影响[J]. 临床儿科杂志, 2025, 43(3): 163-167. |
[2] | 徐雪娜, 李娇阳, 陈苏清, 张义祝, 蒋吴君, 郝创利. COVID-19大流行前、中、后苏州儿童RSV流行动态及其他病原混合阳性情况分析[J]. 临床儿科杂志, 2025, 43(3): 168-176. |
[3] | 李珊珊, 胡丹丹. 儿童甲型H1N1流行性感冒相关性脑病死亡危险因素分析[J]. 临床儿科杂志, 2025, 43(3): 177-183. |
[4] | 翟宇, 段素霞, 贾凡平, 贾永萍, 张京京, 郭映辉. 儿童呼吸道博卡病毒感染流行特征分析:一项单中心回顾性研究[J]. 临床儿科杂志, 2025, 43(3): 184-190. |
[5] | 赵培伟, 张蕾, 孟庆杰, 何学莲. 脑组织铁沉积神经变性病患儿的临床与遗传学分析[J]. 临床儿科杂志, 2025, 43(3): 199-203. |
[6] | 李昭飞, 王凌超, 赵德安. 儿童食管腐蚀伤的临床诊治研究进展[J]. 临床儿科杂志, 2025, 43(3): 237-242. |
[7] | 杨帆, 李娟, 张网林, 常国营, 李辛, 李芸芸, 佘佳笑, 林卡娜, 李浩, 王秀敏. 布罗索尤单抗治疗X连锁低磷性佝偻病临床分析[J]. 临床儿科杂志, 2025, 43(2): 105-111. |
[8] | 乐慧娟, 吴瑾. 坏死性小肠结肠炎患儿外周血MDSCs数量变化及生物学特性分析:基于GEO数据库[J]. 临床儿科杂志, 2025, 43(2): 112-119. |
[9] | 黄柳芳, 吴博, 王莹. 儿童溃疡性结肠炎手术治疗的预测标志物分析[J]. 临床儿科杂志, 2025, 43(2): 120-127. |
[10] | 林丽华, 张宁, 陈奇洪, 陈莉莉, 陈丽羡, 杨运刚. 儿童支气管Dieulafoy病1例并文献复习[J]. 临床儿科杂志, 2025, 43(2): 135-140. |
[11] | 张硕, 赵雪珉, 沈秀华. 儿童青少年素食饮食行为对健康的影响[J]. 临床儿科杂志, 2025, 43(2): 157-162. |
[12] | 郭芳, 康磊, 武晓圆, 贾艳红, 邸亚楠, 贾莉, 徐梅先. 重症百日咳合并肺孢子菌肺炎患儿5例临床分析[J]. 临床儿科杂志, 2025, 43(2): 99-104. |
[13] | 罗明静, 余嘉明, 王晓东, 张小玲, 余阅, 张瑜, 文飞球, 刘四喜. 424例地中海贫血患儿异基因造血干细胞移植后继发侵袭性真菌病临床分析[J]. 临床儿科杂志, 2025, 43(1): 21-28. |
[14] | 刘冬霞, 金蓉, 林荣军. 儿童重症难治性肺炎支原体肺炎并发闭塞性支气管炎危险因素分析[J]. 临床儿科杂志, 2025, 43(1): 29-34. |
[15] | 钟瑾虹, 王灿, 陈芳. 婴幼儿纤维支气管镜诊疗中镇静技术的研究进展[J]. 临床儿科杂志, 2025, 43(1): 50-55. |
|