临床儿科杂志 ›› 2025, Vol. 43 ›› Issue (10): 792-797.doi: 10.12372/jcp.2025.24e1368
收稿日期:
2024-12-20
录用日期:
2025-06-13
出版日期:
2025-10-15
发布日期:
2025-09-29
通讯作者:
颜崇淮
E-mail:yanchonghuai@xinhuamed.com.cn
基金资助:
Received:
2024-12-20
Accepted:
2025-06-13
Published:
2025-10-15
Online:
2025-09-29
Contact:
YAN Chonghuai
E-mail:yanchonghuai@xinhuamed.com.cn
摘要:
汞(Hg)是一种严重危害儿童健康的重金属。汞会对神经系统造成不可逆损伤,其机制已得到了广泛研究。但是,汞暴露对免疫系统产生的影响却研究甚少。本文综述了不同形态汞的免疫毒性及其毒理机制,探讨了免疫细胞、免疫球蛋白和细胞因子等汞暴露损害免疫功能的不同途径,以及汞暴露与儿童自身免疫性疾病及癌症发生之间存在的相关性。营养素如硒和维生素E可能对于汞暴露具有保护作用。迄今,汞的免疫毒性机制尚未完全明确,未来需更多标准化研究以阐明其影响及干预策略。
中图分类号:
崔欣怡, 颜崇淮. 汞暴露对儿童免疫系统影响的研究进展[J]. 临床儿科杂志, 2025, 43(10): 792-797.
CUI Xinyi, YAN Chonghuai. Research progress of the effects of mercury exposure on the immune system in children[J]. Journal of Clinical Pediatrics, 2025, 43(10): 792-797.
[1] |
Parida L, Patel TN. Systemic impact of heavy metals and their role in cancer development: a review[J]. Environ Monit Assess, 2023, 195(6): 766.
doi: 10.1007/s10661-023-11399-z pmid: 37249740 |
[2] | Balali-Mood M, Naseri K, Tahergorabi Z, et al. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic[J]. Front Pharmacol, 2021, 12: 643972. |
[3] |
Carocci A, Rovito N, Sinicropi MS, et al. Mercury toxicity and neurodegenerative effects[J]. Rev Environ Contam Toxicol, 2014, 229: 1-18.
doi: 10.1007/978-3-319-03777-6_1 pmid: 24515807 |
[4] | 冯永全, 耿雪, 胡静, 等. 28d灌胃给予氯化甲基汞对Wistar雌性大鼠免疫系统影响的研究[J]. 毒理学杂志, 2015, 29(2): 102-105. |
Feng YQ, Geng X, Hu J, et al. Immunotoxicity assessment of Methyl mercuty chloride in female rats after 28-day oral exposure[J]. Dulixue Zazhi, 2015, 29(2): 102-105. | |
[5] | 李玄, 王锐, 尹大强. 饮用水汞暴露对小鼠免疫系统的毒性[J]. 环境化学, 2014, 33(9): 1427-1432. |
Li X, Wang Y, Yin DQ. Immunotoxic effects of mercury exposure via drinking water[J]. Huanjing Huaxue, 2014, 33(9): 1427-1432. | |
[6] | 李倩, 郁馨纯, 张燕东, 等. 经饮水甲基汞对小鼠脾脏中成熟免疫细胞影响的时间-效应特征[J]. 环境与职业医学, 2017, 34(3): 264-720. |
Li Q, Yu XC, Zhang YD, et al. Time-effect features of methyl mercury exposure via drinking on mature immune cells in spleen of mice[J]. Huanjing Yu Zhiye Yixue, 2017, 34(3): 264-270. | |
[7] | Levin M, Jasperse L, Desforges JP, et al. Methyl mercury (MeHg) in vitro exposure alters mitogen-induced lymphocyte proliferation and cytokine expression in Steller sea lion (Eumetopias jubatus) pups[J]. Sci Total Environ, 2020, 725: 138308. |
[8] | Silva-Pereira LC, da Rocha CA, Cunha LR, et al. Protective effect of prolactin against methylmercury-induced mutagenicity and cytotoxicity on human lymphocytes[J]. Int J Environ Res Public Health, 2014, 11(9): 9822-9834. |
[9] | Zheng K, Zeng Z, Tian Q, et al. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children[J]. Sci Total Environ, 2023, 868: 161691. |
[10] | 冀军, 刘扬. 汞对免疫球蛋白IgG分子构象的体外研究[J]. 高分子通报, 2019, (8): 29-34. |
Ji J, Liu Y. In vitro Study of Mercury and Immunoglobulin IgG[J]. Gaofenzi Tongbao, 2019, (8): 29-34. | |
[11] | 宋文超. 铅、镉、汞对小鼠免疫毒性的研究[D]. 延边大学, 2018. |
Song WC. The immunotoxicity of lead, cadmiun and mercury in mice[D]. Yanbian Daxue, 2018. | |
[12] | Abu Zeid EH, Khalifa BA, Said EN, et al. Neurobehavioral and immune-toxic impairments induced by organic methyl mercury dietary exposure in Nile tilapia Oreochromis niloticus[J]. Aquat Toxicol, 2021, 230: 105702. |
[13] | Ahn H, Kim J, Kang SG, et al. Mercury and arsenic attenuate canonical and non-canonical NLRP3 inflam-masome activation[J]. Sci Rep, 2018, 8(1): 13659. |
[14] |
Hui LL, Chan MHM, Lam HS, et al. Impact of fetal and childhood mercury exposure on immune status in children[J]. Environ Res, 2016, 144(Pt A): 66-72.
doi: S0013-9351(15)30133-X pmid: 26562044 |
[15] |
Al-Mazroua HA, Nadeem A, Ansari MA, et al. Methy-lmercury chloride exposure exacerbates existing neurobehavioral and immune dysfunctions in the BTBR T(+) Itpr3(tf)/J mouse model of autism[J]. Immunol Lett, 2022, 244: 19-27.
doi: 10.1016/j.imlet.2022.03.001 pmid: 35259423 |
[16] | Ahmad SF, Bakheet SA, Ansari MA, et al. Methylmercury chloride exposure aggravates proinflammatory mediators and Notch-1 signaling in CD14(+) and CD40(+) cells and is associated with imbalance of neuroimmune function in BTBR T(+) Itpr3tf/J mice[J]. Neurotoxicology, 2021, 82: 9-17. |
[17] |
Yamamoto M, Khan N, Muniroh M, et al. Activation of interleukin-6 and -8 expressions by methylmercury in human U937 macrophages involves RelA and p50[J]. J Appl Toxicol, 2017, 37(5): 611-620.
doi: 10.1002/jat.3411 pmid: 27917510 |
[18] | Monastero RN, Vacchi-Suzzi C, Marsit C, et al. Expression of genes involved in stress, toxicity, inflammation, and autoimmunity in relation to cadmium, mercury, and lead in human blood: a pilot study[J]. Toxics, 2018, 6(3): 35. |
[19] |
Carruthers NJ, Rosenspire AJ, Caruso JA, et al. Low level Hg(2+) exposure modulates the B-cell cytoskeletal phosphoproteome[J]. J Proteomics, 2018, 173: 107-114.
doi: S1874-3919(17)30409-8 pmid: 29199152 |
[20] |
Caruso JA, Carruthers N, Shin N, et al. Mercury alters endogenous phosphorylation profiles of SYK in murine B cells[J]. BMC Immunol, 2017, 18(1): 37.
doi: 10.1186/s12865-017-0221-0 pmid: 28716125 |
[21] | Dupont A, De Pauw-Gillet MC, Schnitzler J, et al. Effects of methylmercury on harbour seal peripheral blood leucocytes in vitro studied by electron microscopy[J]. Arch Environ Contam Toxicol, 2016, 70(1): 133-142. |
[22] |
Migdal C, Foggia L, Tailhardat M, et al. Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling[J]. Toxicology, 2010, 274(1-3): 1-9.
doi: 10.1016/j.tox.2010.04.016 pmid: 20457211 |
[23] | Ren Z, Liu J, Huang W, et al. Antioxidant defenses and immune responses of flounder Paralichthys olivaceus larvae under methylmercury exposure[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2019, 225: 108589. |
[24] | Moniruzzaman M, Lee S, Park Y, et al. Evaluation of dietary selenium, vitamin C and E as the multi-antioxidants on the methylmercury intoxicated mice based on mercury bioaccumulation, antioxidant enzyme activity, lipid peroxidation and mitochondrial oxidative stress[J]. Chemosphere, 2021, 273: 129673. |
[25] | Benvenga S, Famà F, Perdichizzi LG, et al. Fish and the thyroid: a janus bifrons relationship caused by pollutants and the omega-3 polyunsaturated fatty acids[J]. Front Endocrinol (Lausanne), 2022, 13: 891233. |
[26] | Wei Y, Ni L, Pan J, et al. Methylmercury promotes oxidative stress and autophagy in rat cerebral cortex: involvement of PI3K/AKT/mTOR or AMPK/TSC2/mTOR pathways and attenuation by N-acetyl-L-cysteine[J]. Neurotoxicol Teratol, 2022, 95: 107137. |
[27] | Shinde A, Sharma R, Kumar P, et al. Combined effect of mercury and ammonia toxicity and its mitigation through selenium nanoparticles in fish[J]. Aquat Toxicol, 2025, 280: 107270. |
[28] | Alhusaini A, Alghilani S, Alhuqbani W, et al. Vitamin E and lactobacillus provide protective effects against liver injury induced by HgCl(2): role of CHOP, GPR87, and mTOR proteins[J]. Dose Response, 2021, 19(2): 15593258211011360. |
[29] | Shalan MG. Amelioration of mercuric chloride-induced physiologic and histopathologic alterations in rats using vitamin E and zinc chloride supplement[J]. Heliyon, 2022, 8(12): e12036. |
[30] |
Crowe W, Allsopp PJ, Nyland JF, et al. Inflammatory response following in vitro exposure to methylmercury with and without n-3 long chain polyunsaturated fatty acids in peripheral blood mononuclear cells from systemic lupus erythematosus patients compared to healthy controls[J]. Toxicol In Vitro, 2018, 52: 272-278.
doi: S0887-2333(18)30185-1 pmid: 29778720 |
[31] | Pollard KM, Cauvi DM, Toomey CB, et al. Mercury-induced inflammation and autoimmunity[J]. Biochim Biophys Acta Gen Subj, 2019, 1863(12): 129299. |
[32] | Yeter D, Deth R, Kuo HC. Mercury promotes cate-cholamines which potentiate mercurial autoimmunity and vasodilation: implications for inositol 1,4,5-triphosphate 3-kinase C susceptibility in kawasaki syndrome[J]. Korean Circ J, 2013, 43(9): 581-591. |
[33] |
Häggqvist B, Havarinasab S, Björn E, et al. The immunosuppressive effect of methylmercury does not preclude development of autoimmunity in genetically susceptible mice[J]. Toxicology, 2005, 208(1): 149-164.
pmid: 15664442 |
[34] | Chang LS, Yan JH, Li JY, et al. Blood mercury levels in children with Kawasaki disease and disease outcome[J]. Int J Environ Res Public Health, 2020, 17(10): 3762. |
[35] |
Yanai T, Yoshida S, Takeuchi M, et al. Association between maternal heavy metal exposure and Kawasaki disease, the Japan Environment and Children's Study (JECS)[J]. Sci Rep, 2024, 14(1): 9947.
doi: 10.1038/s41598-024-60830-z pmid: 38689029 |
[36] |
Bjørklund G, Dadar M, Aaseth J. Delayed-type hypersensitivity to metals in connective tissue diseases and fibromyalgia[J]. Environ Res, 2018, 161: 573-579.
doi: S0013-9351(17)31728-0 pmid: 29245125 |
[37] | Amirhosseini M, Alkaissi H, Hultman PA, et al. Autoantibodies in outbred Swiss Webster mice following exposure to gold and mercury[J]. Toxicol Appl Pharmacol, 2021, 412: 115379. |
[38] | Pamphlett R, Kum Jew S. Mercury is taken up selectively by cells involved in joint, bone, and connective tissue disorders[J]. Front Med (Lausanne), 2019, 6: 168. |
[39] | Kim KN, Bae S, Park HY, et al. Low-level mercury exposure and risk of asthma in school-age children[J]. Epidemiology, 2015, 26(5): 733-739. |
[40] | Smith AR, Lin PD, Rifas-Shiman SL, et al. Prenatal blood metals, per-and polyfluoroalkyl substances and antigen-or mitogen-stimulated cord blood lymphocyte proliferation and cytokine secretion[J]. Environ Res, 2024, 259: 119555. |
[41] | Lee JY, Choi YH, Choi HI, et al. Association between environmental mercury exposure and allergic disorders in Korean children: Korean National Environmental Health Survey (KoNEHS) cycles 3-4 (2015-2020)[J]. Sci Rep, 2024, 14(1): 1472. |
[42] | Shin J, Kim BM, Ha M, et al. The Association between mercury exposure and atopic dermatitis in early childhood: a mothers and children's environmental health study[J]. Epidemiology, 2019, 30 Suppl 1: S3-S8. |
[43] | Miyazaki J, Ikehara S, Tanigawa K, et al. Prenatal exposure to selenium, mercury, and manganese during pregnancy and allergic diseases in early childhood: the Japan environment and children's study[J]. Environ Int, 2023, 179: 108123. |
[44] | Carrasco P, Estarlich M, Iñiguez C, et al. Pre and postnatal exposure to mercury and respiratory health in preschool children from the Spanish INMA birth cohort study[J]. Sci Total Environ, 2021, 782: 146654. |
[45] |
Heinrich J, Guo F, Trepka MJ. Brief report: low-level mercury exposure and risk of asthma in school-age children[J]. Epidemiology, 2017, 28(1): 116-118.
pmid: 27755278 |
[46] | Wu KG, Chang CY, Yen CY, et al. Associations between environmental heavy metal exposure and childhood asthma: A population-based study[J]. J Microbiol Immunol Infect, 2019, 52(2): 352-362. |
[47] | Feiler MO, Kulick ER, Sinclair K, et al. Toxic metals and pediatric clinical immune dysfunction: A systematic review of the epidemiological evidence[J]. Sci Total Environ, 2024, 927: 172303. |
[48] | Zefferino R, Piccoli C, Ricciardi N, et al. Possible mechanisms of mercury toxicity and cancer promotion: involvement of gap junction intercellular communications and inflammatory cytokines[J]. Oxid Med Cell Longev, 2017, 2017: 7028583. |
[49] | Skalny AV, Aschner M, Sekacheva MI, et al. Mercury and cancer: Where are we now after two decades of research?[J]. Food Chem Toxicol, 2022, 164: 113001. |
[1] | 张未, 汪洋, 邓文华, 吴亚斌. 14例原发性纤毛运动障碍临床表现、纤毛结构及基因特点分析[J]. 临床儿科杂志, 2025, 43(9): 680-685. |
[2] | 项琳娟, 陈雪欣, 贾艳会, 吴宇航, 丛鑫, 李伟, 陈盈盈, 陈笋, 黄丽素. 儿童3型腺病毒肺炎预后影响因素分析[J]. 临床儿科杂志, 2025, 43(9): 686-691. |
[3] | 常亚, 周昀箐, 王纪文, 吴鸿雁, 羊芳菲, 孙丽娜. 儿童先天性肌强直治疗3例报道[J]. 临床儿科杂志, 2025, 43(9): 692-697. |
[4] | 汪洁, 吴彬, 张兰男, 陈开澜. 儿童肝脾T细胞淋巴瘤2例并文献复习[J]. 临床儿科杂志, 2025, 43(9): 698-704. |
[5] | 叶泽慧, 姜小丽. 西罗莫司治疗儿童弥漫性肺淋巴管瘤病1例报告[J]. 临床儿科杂志, 2025, 43(9): 705-709. |
[6] | 董素贞, 陈浩, 张志勇, 江帆. 低场强MRI在儿科和产前胎儿诊断领域中的应用[J]. 临床儿科杂志, 2025, 43(9): 710-715. |
[7] | 石小松, 傅世杰, 何小花, 吕辉, 陈厚杨, 陈茂琳, 陈捷. 福建省两地区百日咳鲍特菌抗原基因型特征及耐药性分析[J]. 临床儿科杂志, 2025, 43(8): 575-582. |
[8] | 裴培, 李伟华, 淮婉, 姚如恩, 葛禾佳, 王纪文, 王秀敏, 吉炜, 周昀箐, 贺影忠, 韩凤. ATP1A2 / ATP1A3基因变异患儿10例遗传学及临床特征分析[J]. 临床儿科杂志, 2025, 43(8): 590-597. |
[9] | 李鹤婷, 孙瑞迪, 江军. 儿童急性抗GQ1b抗体综合征的临床特点、预后及神经电生理特征[J]. 临床儿科杂志, 2025, 43(8): 604-609. |
[10] | 张成, 曹巧玉, 郑璐瑶, 李明, 葛宏松. 儿童面部获得性色素沉着斑54例临床表现、皮肤镜特征及预后分析[J]. 临床儿科杂志, 2025, 43(8): 610-614. |
[11] | 中国医师协会儿科医师分会肾脏疾病学组中国儿童遗尿疾病管理协作组. 中国儿童遗尿症疾病管理专家共识(2025年)[J]. 临床儿科杂志, 2025, 43(7): 483-499. |
[12] | 王颖硕, 陈志敏. 数智化赋能儿童支气管哮喘的诊治和管理[J]. 临床儿科杂志, 2025, 43(7): 500-504. |
[13] | 赵琳朝, 王英洁, 景沼贺, 买钰淼, 孙盼, 邱思敏, 牛宏运, 陈志伟, 董芃芃, 刘健. 造血干细胞移植治疗儿童遗传性骨髓衰竭综合征疗效及预后分析[J]. 临床儿科杂志, 2025, 43(7): 505-510. |
[14] | 张志奇, 熊若兰, 李泊涵, 吉奇, 王庆伟, 卢俊, 李捷, 肖佩芳, 胡绍燕. 儿童白血病脐带血移植原发性植入失败预测模型的构建[J]. 临床儿科杂志, 2025, 43(7): 511-518. |
[15] | 姜雯雯, 李思彤, 徐勇胜. 儿童肺结核γ-干扰素释放试验假阴性结果影响因素分析[J]. 临床儿科杂志, 2025, 43(7): 519-524. |
|