[1] |
中华预防医学会, 中华预防医学会疫苗与免疫分会. 中国百日咳行动计划专家共识[J]. 中华流行病学杂志, 2021, 42(6): 955-965.
|
|
Association Chinese Preventive Medicine, Association Vaccine and Immunology Branch of the Chinese Preventive Medicine. Expert consensus on the China Pertussis Initiative[J]. Zhonghua Liuxingbingxue Zazhi, 2021, 42(6): 955-965.
|
[2] |
Kuchar E, Karlikowska-Skwarnik M, Han S, et al. Pertussis: history of the disease and current prevention failure[J]. Adv Exp Med Biol, 2016, 934: 77-82.
doi: 10.1007/5584_2016_21
pmid: 27256351
|
[3] |
华春珍, 王传清, 杨章女, 等. 百日咳病原新认识及其抗感染策略[J]. 临床儿科杂志, 2024, 42(6): 480-484.
|
|
Hua CZ, Wang CQ, Yang ZY, et al. New insights into the pathogen of pertussis and strategies for antibacterial infection[J]. Linchuang Erke Zazhi, 2024, 42(6): 480-484.
|
[4] |
国家疾病预防控制局. 2024年12月全国法定传染病疫情概况[EB/OL]. [2025-04-01]. https://www.ndcpa.gov.cn/jbkzzx/c100016/common/content/content_1879707944644890624.html.
|
|
National Disease Control and Prevention Administration. National Report on Legally Notifiable Infectious Diseases in December 2024 [EB/OL]. [2025-04-01]. https://www.ndcpa.gov.cn/jbkzzx/c100016/common/content/content_1879707944644890624.html.
|
[5] |
贾海梅, 陈杨伟, 王清华, 等. 2018-2022年福建省福州市百日咳流行病学特征及防控策略探讨[J]. 疾病监测, 2024, 39(5): 571-575.
|
|
Jia HM, Chen YW, Wang QH, et al. Epidemiological characteristics and prevention and control strategies of pertussis in Fuzhou, Fujian province 2018-2020[J]. Jibing Jiance, 2024, 39(5): 571-575.
|
[6] |
Liu Y, Yu D, Wang K, et al. Global resurgence of pertussis: A perspective from China[J]. J Infect, 2024, 89(5): 106289.
|
[7] |
张梦瑶, 何美燕, 左伟伦, 等. 云南西双版纳百日咳博德特氏菌分离株抗原基因特征分析[J]. 中国公共卫生, 2023, 39(2): 245-248.
|
|
Zhang MY, He MY, Zuo WL, et al. Antigenic gene characteristics of Bordetella pertussis isolates from child patients in Xishuangbanna, Yunnan province: a comparative analysis[J]. Zhongguo Gonggong Weisheng, 2023, 39(2): 245-248.
|
[8] |
Wu S, Hu Q, Yang C, et al. Molecular epidemiology of Bordetella pertussis and analysis of vaccine antigen genes from clinical isolates from Shenzhen, China[J]. Ann Clin Microbiol Antimicrob, 2021, 20(1): 53.
|
[9] |
李振翠, 马炜森, 王安娜, 等. 广东省两个地区2021-2022年百日咳鲍特菌分离株的抗菌药物敏感性和抗原基因型[J]. 中国疫苗和免疫, 2023, 29(5): 498-502.
|
|
Li ZC, Ma WS, Wang AN, et al. Antimicrobial susceptibility and antigen genotypes of Bordetella pertussis strains isolated in two prefectures of Guangdong province in 2021-2022[J]. ZhongGuo Yimiao He Mianyi, 2023, 29(5): 498-502.
|
[10] |
中华医学会感染病学分会儿科感染学组, 国家卫生健康委能力建设和继续教育儿科专委会感染组, 中国临床实践指南联盟方法学专委会, 等. 中国百日咳诊疗与预防指南(2024版)[J]. 中华医学杂志, 2024, 104(15): 1258-1279.
|
|
Pediatric Infection Group Chinese Society of Infectious Diseases, Chinese Medical Association, Infection Group Pediatric Expert Committee of National Health Commission Capacity Building and Continuing Education, Committee China Clinical Practice Guidelines Alliance Methodology, et al. Guidelines for diagnosis and management and prevention of pertussis of China (2024 edition)[J]. Zhonghua Yixue Zazhi, 2024, 104(15): 1258-1279.
|
[11] |
van der Zee A, Schellekens JF, Mooi FR. Laboratory diagnosis of pertussis[J]. Clin Microbiol Rev, 2015, 28(4): 1005-1026.
doi: 10.1128/CMR.00031-15
pmid: 26354823
|
[12] |
Yang Y, Yao K, Ma X, et al. Variation in Bordetella pertussis susceptibility to erythromycin and virulence-related genotype changes in China (1970-2014)[J]. PLoS One, 2015, 10(9): e0138941.
|
[13] |
Xie J, Chen Y, Cai G, et al. Tree Visualization By One Table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees[J]. Nucleic Acids Res, 2023, 51(W1): W587-W592.
|
[14] |
Lin X, Zou J, Yao K, et al. Analysis of antibiotic sensitivity and resistance genes of Bordetella pertussis in Chinese children[J]. Medicine (Baltimore), 2021, 100(2): e24090.
|
[15] |
CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed. CLSI Standards M100[S]. Malvern, Pennsylvania, USA: Clinical and Laboratory Standards Institute, 2023.
|
[16] |
Etskovitz H, Anastasio N, Green E, et al. Role of evolutionary selection acting on vaccine antigens in the re-emergence of Bordetella pertussis [J]. Diseases, 2019, 7(2): 35.
|
[17] |
Heikkinen E, Xing DK, Olander RM, et al. Bordetella pertussis isolates in Finland: serotype and fimbrial expression[J]. BMC Microbiol, 2008, 8: 162.
doi: 10.1186/1471-2180-8-162
pmid: 18816412
|
[18] |
de Paula VG, de Sousa RS, da Silva R, et al. fim3-24/ptxP-3 genotype is associated to whooping cough outbreak in Brazilian Midwest: the selection of Bordetella pertussis strains driven by vaccine immunization[J]. Infect Genet Evol, 2024, 121: 105599.
|
[19] |
Xu Z, Hu D, Luu LDW, et al. Genomic dissection of the microevolution of Australian epidemic Bordetella pertussis [J]. Emerg Microbes Infect, 2022, 11(1): 1460-1473.
|
[20] |
Ring N, Davies H, Morgan J, et al. Comparative genomics of Bordetella pertussis isolates from New Zealand, a country with an uncommonly high incidence of whooping cough[J]. Microb Genom, 2022, 8(1): 000756.
|
[21] |
Zomer A, Otsuka N, Hiramatsu Y, et al. Bordetella pertussis population dynamics and phylogeny in Japan after adoption of acellular pertussis vaccines[J]. Microb Genom, 2018, 4(5): e000180.
|
[22] |
Schmidtke AJ, Boney KO, Martin SW, et al. Population diversity among Bordetella pertussis isolates, United States, 1935-2009[J]. Emerg Infect Dis, 2012, 18(8): 1248-1255.
doi: 10.3201/eid1808.120082
pmid: 22841154
|
[23] |
Bouchez V, Guillot S, Landier A, et al. Evolution of Bordetella pertussis over a 23-year period in France, 1996 to 2018[J]. Euro Surveill, 2021, 26(37).
|
[24] |
King AJ, van der Lee S, Mohangoo A, et al. Genome-wide gene expression analysis of Bordetella pertussis isolates associated with a resurgence in pertussis: elucidation of factors involved in the increased fitness of epidemic strains[J]. PLoS One, 2013, 8(6): e66150.
|
[25] |
Hijnen M, de Voer R, Mooi FR, et al. The role of peptide loops of the Bordetella pertussis protein P.69 pertactin in antibody recognition[J]. Vaccine, 2007, 25(31): 5902-5914.
|
[26] |
Li Z, Xiao F, Hou Y, et al. Genomic epidemiology and evolution of Bordetella pertussis under the vaccination pressure of acellular vaccines in Beijing, China, 2020-2023[J]. Emerg Microbes Infect, 2025, 14(1): 2447611.
|
[27] |
Fu P, Zhou J, Meng J, et al. Emergence and spread of MT28 ptxP3 allele macrolide-resistant Bordetella pertussis from 2021 to 2022 in China[J]. Int J Infect Dis, 2023, 128: 205-211.
|
[28] |
Safarchi A, Octavia S, Luu LD, et al. Pertactin negative Bordetella pertussis demonstrates higher fitness under vaccine selection pressure in a mixed infection model[J]. Vaccine, 2015, 33(46): 6277-6281.
doi: 10.1016/j.vaccine.2015.09.064
pmid: 26432908
|
[29] |
Tsang RSW, Shuel M, Cronin K, et al. The evolving nature of Bordetella pertussis in Ontario, Canada, 2009-2017: strains with shifting genotypes and pertactin deficiency[J]. Can J Microbiol, 2019, 65(11): 823-830.
|
[30] |
Otsuka N, Han HJ, Toyoizumi-Ajisaka H, et al. Prevalence and genetic characterization of pertactin-deficient Bordetella pertussis in Japan[J]. PLoS One, 2012, 7(2): e31985.
|
[31] |
Esposito S, Stefanelli P, Fry NK, et al. Pertussis prevention: reasons for resurgence, and differences in the current acellular pertussis vaccines[J]. Front Immunol, 2019, 10: 1344.
doi: 10.3389/fimmu.2019.01344
pmid: 31333640
|
[32] |
Hu Y, Zhou L, Du Q, et al. Sharp rise in high-virulence Bordetella pertussis with macrolides resistance in Northern China[J]. Emerg Microbes Infect, 2025, 14(1): 2475841.
|
[33] |
Fu P, Yan G, Li Y, et al. Pertussis upsurge, age shift and vaccine escape post-COVID-19 caused by ptxP3 macrolide-resistant Bordetella pertussis MT28 clone in China[J]. Clin Microbiol Infect, 2024, 30(11): 1439-1446.
|
[34] |
Ivaska L, Barkoff AM, Mertsola J, et al. Macrolide resistance in Bordetella pertussis: current situation and future challenges[J]. Antibiotics (Basel), 2022, 11(11).
|
[35] |
Zhao H, Wei L, Li H, et al. Appropriateness of antibiotic prescriptions in ambulatory care in China: a nationwide descriptive database study[J]. Lancet Infect Dis, 2021, 21(6): 847-857.
doi: 10.1016/S1473-3099(20)30596-X
pmid: 33515511
|
[36] |
Yao K, Deng J, Ma X, et al. The epidemic of erythromycin-resistant Bordetella pertussis with limited genome variation associated with pertussis resurgence in China[J]. Expert Rev Vaccines, 2020, 19(11): 1093-1099.
|
[37] |
Li L, Deng J, Ma X, et al. High prevalence of macrolide-resistant Bordetella pertussis and ptxP1 genotype, Mainland China, 2014-2016[J]. Emerg Infect Dis, 2019, 25(12): 2205-2214.
|
[38] |
Hua CZ, Wang HJ, Zhang Z, et al. In vitro activity and clinical efficacy of macrolides, cefoperazone-sulbactam and piperacillin/piperacillin-tazobactam against Bordetella pertussis and the clinical manifestations in pertussis patients due to these isolates: a single-centre study in Zhejiang Province, China[J]. J Glob Antimicrob Resist, 2019, 18: 47-51.
|
[39] |
Cimolai N. Pharmacotherapy for Bordetella pertussis infection. II. A synthesis of clinical sciences[J]. Int J Antimicrob Agents, 2021, 57(3): 106257.
|
[40] |
Mi YM, Hua CZ, Fang C, et al. Effect of macrolides and β-lactams on clearance of Bordetella pertussis in the nasopharynx in children with whooping cough[J]. Pediatr Infect Dis J, 2021, 40(2): 87-90.
|
[41] |
许示沂, 杜敏, 白丽霞, 等. 婴幼儿重症百日咳研究进展[J]. 临床儿科杂志, 2025, 43(5): 383-388.
|
|
Xu SY, Du M, Bai LX, et al. Research progress on severe pertussis in infants and young children[J]. Linchuang Erke Zazhi, 2025, 43(5): 383-388.
|