| [1] |
Lawn JE, Ohuma EO, Bradley E, et al. Small babies, big risks: global estimates of prevalence and mortality for vulnerable newborns to accelerate change and improve counting[J]. Lancet, 2023, 401(10389): 1707-1719.
doi: 10.1016/S0140-6736(23)00522-6
pmid: 37167989
|
| [2] |
World Health Organization. Born too soon:decade of action on preterm birth[EB/OL]. Geneva: World Health Organization. 2023 [2025-04-16]. https://www.who.int/publications/i/item/9789240073890.
|
| [3] |
赵风华, 张悦, 孙瑾, 等. 0-3岁早产/低出生体重儿养育问题调查:一项多中心横断面研究[J]. 临床儿科杂志, 2024, 42(7): 606-612.
|
|
Zhao FH, Zhang Y, Sun J, et al. Child-rearing problems of premature/low birth weight children aged 0 to 3 years: a multicenter cross-sectional study[J]. Linchuang Erke Zazhi, 2024, 42(7): 606-612.
|
| [4] |
Epstein AA, Janos SN, Menozzi L, et al. Subventricular zone stem cell niche injury is associated with intestinal perforation in preterm infants and predicts future motor impairment[J]. Cell Stem Cell, 2024, 31(4): 467-483.
doi: 10.1016/j.stem.2024.03.001
pmid: 38537631
|
| [5] |
Michaeli J, Michaeli O, Rozitzky A, et al. Application of prospect theory in obstetrics by evaluating mode of delivery and outcomes in neonates born small or appropriate for gestational age[J]. JAMA Netw Open, 2022, 5(3): e222177.
|
| [6] |
Dutton AJ, Turnbaugh EM, Patel CD, et al. Asymptomatic neonatal herpes simplex virus infection in mice leads to persistent CNS infection and long-term cognitive impairment[J]. PLoS Pathog. 2025, 21(2): e1012935.
|
| [7] |
首都儿科研究所, 九市儿童体格发育调查协作组. 中国不同出生胎龄新生儿出生体重、身长和头围的生长参照标准及曲线[J]. 中华儿科杂志, 2020, 58(9): 738-746.
|
|
Capital Institute of Pediatrics, The Coordinating Study Group of Nine Cities on the Physical Growth and Development of Children. Growth standard curves of birth weight, length and head circumference of Chinese newborns of different gestation[J]. Zhonghua Erke Zazhi, 2020, 58(9): 738-746.
|
| [8] |
孔北华, 马丁, 段涛, 等. 妇产科学[M]. 10版. 北京: 人民卫生出版社, 2024.
|
|
Kong BH, Ma D, Duan T. Obstetrics and Gynecology[M]. 10th ed. Beijing: People's Medical Publishing House, 2024.
|
| [9] |
中华医学会妇产科学分会产科学组, 中华医学会围产医学分会, 中国妇幼保健协会妊娠合并糖尿病专业委员会. 妊娠期高血糖诊治指南(2022)[第一部分][J]. 中华妇产科杂志, 2022, 57(1): 3-12.
|
|
Obstetrics Subgroup, Chinese Society of Obstetrics and Gynecology, Chinese Medical Association Chinese Society of Perinatal Medicine, Chinese Medical Association Commitee of Pregnancy with Diabetes Mellitus, China Maternal and Child Health Association. Guideline of diagnosis and treatment of hyperglycemia in pregnancy(2022)[Part one][J]. Zhonghua Fuchanke Zazhi, 2022, 57(1): 3-12.
|
| [10] |
Singh M, Wambua S, Lee SI, et al. Autoimmune diseases and adverse pregnancy outcomes: an umbrella review[J]. Lancet, 2023, 402 Suppl 1: S84.
|
| [11] |
Fan H, Kouvari M, Guo C, et al. A comprehensive comparison of two commonly used BMI thresholds for non-communicable diseases and multimorbidity in the Chinese population[J]. Clin Nutr, 2025, 48: 70-79.
|
| [12] |
Ashorn P, Ashorn U, Muthiani Y, et al. Small vulnerable newborns-big potential for impact[J]. Lancet, 2023, 401(10389): 1692-1706.
doi: 10.1016/S0140-6736(23)00354-9
pmid: 37167991
|
| [13] |
Hazel EA, Erchick DJ, Katz J, et al. Neonatal mortality risk of vulnerable newborns: a descriptive analysis of subnational, population-based birth cohorts for 238 203 live births in low- and middle-income settings from 2000 to 2017[J]. BJOG, 2023. doi: 10.1111/1471-0528.17518.
|
| [14] |
Zhao Y, Jia Z, Wang L, et al. Trends in the incidence of high-risk newborns based on a new conceptual framework - Beijing municipality, China, 2013-2022[J]. China CDC Wkly. 2024, 6(31): 767-771.
|
| [15] |
Kaforau LSK, Tessema GA, Jancey J, et al. Prevalence and risk factors of adverse birth outcomes in the Pacific Island region: a scoping review[J]. Lancet Reg Health West Pac, 2022, 21: 100402.
|
| [16] |
Xiang L, Li X, Mu Y, et al. Maternal characteristics and prevalence of infants born small for gestational age[J]. JAMA Netw Open, 2024, 7(8): e2429434.
|
| [17] |
Yue W, Zhang E, Liu R, et al. The China birth cohort study (CBCS)[J]. Eur J Epidemiol, 2022, 37(3): 295-304.
doi: 10.1007/s10654-021-00831-8
pmid: 35146635
|
| [18] |
国务院第七次全国人口普查领导小组办公室. 2020年第七次全国人口普查主要数据[M]. 北京: 中国统计出版社, 2021.
|
|
Office of the Leading Group for the Seventh National Population Census of the State Council. Major figures on 2020 population census of China[M]. Beijing: China Statistics Press, 2021.
|
| [19] |
Thiruvengadam R, Ayushi, Murugesan DR, et al. Incidence of and risk factors for small vulnerable newborns in north India: a secondary analysis of a prospective pregnancy cohort[J]. Lancet Glob Health, 2024, 12(8): e1261-e1277.
|
| [20] |
Ghossein-Doha C, Thilaganathan B, Vaught AJ, et al. Hypertensive pregnancy disorder, an under-recognized women specific risk factor for heart failure?[J]. Eur J Heart Fail, 2025, 27(3): 459-472.
|
| [21] |
Guan S, Bai X, Ding J, et al. Circulating inflammatory cytokines and hypertensive disorders of pregnancy: a two-sample Mendelian randomization study[J]. Front Immunol, 2023, 14: 1297929.
|
| [22] |
Bahri Khomami M, Hashemi S, Shorakae S, et al. Systematic review and meta-analysis of birth outcomes in women with polycystic ovary syndrome[J]. Nat Commun, 2024, 15(1): 5592.
doi: 10.1038/s41467-024-49752-6
pmid: 38965241
|
| [23] |
Choudhury AA, Rajeswari VD. Polycystic ovary syndrome (PCOS) increases the risk of subsequent gestational diabetes mellitus (GDM): A novel therapeutic perspective[J]. Life Sci, 2022, 310: 121069.
|
| [24] |
Chen X, Gissler M, Lavebratt C. Association of maternal polycystic ovary syndrome and diabetes with preterm birth and offspring birth size: a population-based cohort study[J]. Hum Reprod, 2022, 37(6): 1311-1323.
|
| [25] |
Juliusdottir T, Steinthorsdottir V, Stefansdottir L, et al. Distinction between the effects of parental and fetal genomes on fetal growth[J]. Nat Genet, 2021, 53(8): 1135-1142.
|
| [26] |
Chen J, Bacelis J, Sole-Navais P, et al. Dissecting maternal and fetal genetic effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: a mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother-infant pairs[J]. PLoS Med, 2020, 17(8): e1003305.
|
| [27] |
Ma M, Zhang W, Zhang J, et al. Effect of paternal body mass index on neonatal outcomes of singletons after frozen-thawed embryo transfer cycles: analysis of 7,908 singleton newborns[J]. Fertil Steril, 2020, 113(6): 1215-1223.
doi: S0015-0282(20)30201-6
pmid: 32402450
|
| [28] |
Mossetti L, Hervás-Herrero I, Gil-Juliá M, et al. Effect of paternal body mass index on cumulative live birth rates: retrospective analysis of 3048 embryo transfers in couples using autologous gametes[J]. Cells, 2024, 13(22): 1836.
|