临床儿科杂志 ›› 2026, Vol. 44 ›› Issue (1): 64-70.doi: 10.12372/jcp.2026.25e0166
收稿日期:2025-02-27
录用日期:2025-05-28
出版日期:2026-01-15
发布日期:2026-01-05
通讯作者:
方莹 电子信箱:基金资助:
ZHOU Yuanke1,2, SUN Lina2, FANG Ying2(
)
Received:2025-02-27
Accepted:2025-05-28
Published:2026-01-15
Online:2026-01-05
摘要:
炎症性肠病(IBD)是一种累及全消化道的慢性复发性炎症性疾病,营养素缺乏是IBD患者普遍存在的问题,锌作为人体维持细胞生理功能的重要营养素,在治疗诸多胃肠道疾病方面的益处得到广泛认可。近年来锌与IBD的相关机制研究不断涌现,越来越多的研究揭示了儿童IBD患者普遍存在锌缺乏的情况,缺锌与IBD患儿疾病复发,以及营养不良、生长发育迟缓、贫血等并发症发生有关。本文将回顾IBD与锌相关的基础及临床研究进展,为IBD的机制研究及优化治疗提供参考。
中图分类号:
周圆可, 孙丽娜, 方莹. 锌在儿童炎症性肠病发生发展及治疗中的研究进展[J]. 临床儿科杂志, 2026, 44(1): 64-70.
ZHOU Yuanke, SUN Lina, FANG Ying. Research progress on the role of zinc in the occurrence, development and treatment of inflammatory bowel disease in children[J]. Journal of Clinical Pediatrics, 2026, 44(1): 64-70.
| [1] | 贾双珍, 孔琰, 刘前超, 等. 儿童炎症性肠病的精准治疗研究与应用[J]. 临床儿科杂志, 2025, 43(3): 226-232. |
| Jia SZ, Kong Y, Liu QC, et al. Application of precision therapy in pediatric inflammatory bowel disease[J]. Linchuang Erke Zazhi, 2025, 43(3): 226-232. | |
| [2] | 吴捷, 张添卓. 儿童炎症性肠病的研究现状及展望[J]. 临床儿科杂志, 2023, 41(11): 801-807. |
| Wu J, Zhang TZ. An analysis of the present status and future prospects of pediatric inflammatory bowel disease[J]. Linchuang Erke Zazhi, 2023, 41(11): 801-807. | |
| [3] |
Long D, Wang C, Huang Y, et al. Changing epidemiology of inflammatory bowel disease in children and adolescents[J]. Int J Colorectal Dis, 2024, 39(1): 73.
doi: 10.1007/s00384-024-04640-9 pmid: 38760622 |
| [4] |
Khan R, Kuenzig ME, Benchimol EI. Epidemiology of pediatric inflammatory bowel disease[J]. Gastroenterol Clin North Am, 2023, 52(3): 483-496.
doi: 10.1016/j.gtc.2023.05.001 |
| [5] |
Kuenzig ME, Fung SG, Marderfeld L, et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: systematic review[J]. Gastroenterology, 2022, 162(4): 1147-1159.
doi: 10.1053/j.gastro.2021.12.282 pmid: 34995526 |
| [6] |
Zupo R, Sila A, Castellana F, et al. Prevalence of zinc deficiency in inflammatory bowel disease: a systematic review and meta-analysis[J]. Nutrients, 2022, 14(19): 4052.
doi: 10.3390/nu14194052 |
| [7] |
Peng X, Yang Y, Zhong R, et al. Zinc and inflammatory bowel disease: from clinical study to animal experiment[J]. Biol Trace Elem Res, 2025, 203(2): 624-634.
doi: 10.1007/s12011-024-04193-6 |
| [8] |
Wan Y, Zhang B. The impact of zinc and zinc homeostasis on the intestinal mucosal barrier and intestinal diseases[J]. Biomolecules, 2022, 12(7): 900.
doi: 10.3390/biom12070900 |
| [9] |
Hennigar SR, McClung JP. Zinc transport in the mammalian intestine[J]. Compr Physiol, 2018, 9(1): 59-74.
doi: 10.1002/cphy.c180001 pmid: 30549025 |
| [10] |
Cheng J, Kolba N, Tako E. The effect of dietary zinc and zinc physiological status on the composition of the gut microbiome in vivo[J]. Crit Rev Food Sci Nutr, 2024, 64(18): 6432-6451.
doi: 10.1080/10408398.2023.2169857 |
| [11] |
Costa MI, Sarmento-Ribeiro AB, Gonçalves AC. Zinc: from biological functions to therapeutic potential[J]. Int J Mol Sci, 2023, 24(5): 4822.
doi: 10.3390/ijms24054822 |
| [12] |
Chao HC. Zinc deficiency and therapeutic value of zinc supplementation in pediatric gastrointestinal diseases[J]. Nutrients, 2023, 15(19): 4093.
doi: 10.3390/nu15194093 |
| [13] |
Rezazadegan M, Soheilipour M, Tarrahi MJ, et al. Correlation between zinc nutritional status with serum zonulin and gastrointestinal symptoms in diarrhea-predominant irritable bowel syndrome: a case-control study[J]. Dig Dis Sci, 2022, 67(8): 3632-3638.
doi: 10.1007/s10620-021-07368-6 |
| [14] |
Wang J, Zhao H, Xu Z, et al. Zinc dysregulation in cancers and its potential as a therapeutic target[J]. Cancer Biol Med, 2020, 17(3): 612-625.
doi: 10.20892/j.issn.2095-3941.2020.0106 pmid: 32944394 |
| [15] | Ohashi W, Fukada T. Contribution of zinc and zinc transporters in the pathogenesis of inflammatory bowel diseases[J]. J Immunol Res, 2019, 2019: 8396878. |
| [16] | Mitchell SB, Thorn TL, Lee MT, et al. Metal transporter SLC39A14/ZIP14 modulates regulation between the gut microbiome and host metabolism[J]. Am J Physiol Gastrointest Liver Physiol, 2023, 325(6): G593-G607. |
| [17] |
Govindarasu M, Vaiyapuri M, Kim JC. Protective effect of zinc oxide nanoparticles synthesized using Cassia alata for DSS-induced ulcerative colitis in mice model[J]. Bioprocess Biosyst Eng, 2024, 47(8): 1393-1407.
doi: 10.1007/s00449-024-03047-8 |
| [18] |
Lahiri A, Abraham C. Activation of pattern recognition receptors up-regulates metallothioneins, thereby increasing intracellular accumulation of zinc, autophagy, and bacterial clearance by macrophages[J]. Gastroenterology, 2014, 147(4): 835-846.
doi: 10.1053/j.gastro.2014.06.024 pmid: 24960189 |
| [19] |
Kido T, Ishiwata K, Suka M, et al. Inflammatory response under zinc deficiency is exacerbated by dysfunction of the T helper type 2 lymphocyte-M2 macrophage pathway[J]. Immunology, 2019, 156(4): 356-372.
doi: 10.1111/imm.13033 pmid: 30552817 |
| [20] |
Vaghari-Tabari M, Jafari-Gharabaghlou D, Sadeghsoltani F, et al. Zinc and selenium in inflammatory bowel disease: trace elements with key roles?[J]. Biol Trace Elem Res, 2021, 199(9): 3190-3204.
doi: 10.1007/s12011-020-02444-w pmid: 33098076 |
| [21] |
Wen C, Wang J, Sun Z, et al. Dietary zinc ameliorates TNBS-induced colitis in mice associated with regulation of Th1/Th2/Th17 balance and NF-κB/NLRP3 signaling pathway[J]. Biol Trace Elem Res, 2024, 202(2): 659-670.
doi: 10.1007/s12011-023-03715-y |
| [22] |
Li J, Chen H, Wang B, et al. ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling[J]. Sci Rep, 2017, 7: 43126.
doi: 10.1038/srep43126 pmid: 28233796 |
| [23] |
Shao Y, Wolf PG, Guo S, et al. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells[J]. J Nutr Biochem, 2017, 43: 18-26.
doi: S0955-2863(16)30545-9 pmid: 28193579 |
| [24] |
Jarmakiewicz-Czaja S, Ferenc K, Sokal-Dembowska A, et al. Nutritional support: the use of antioxidants in inflammatory bowel disease[J]. Int J Mol Sci, 2024, 25(8): 4390.
doi: 10.3390/ijms25084390 |
| [25] |
Zhang C, Li Q, Xing J, et al. Tannic acid and zinc ion coordination of nanase for the treatment of inflammatory bowel disease by promoting mucosal repair and removing reactive oxygen and nitrogen species[J]. Acta Biomater, 2024, 177: 347-360.
doi: 10.1016/j.actbio.2024.02.015 pmid: 38373525 |
| [26] |
Wu W, Liu L, Zhu Y, et al. Zinc-rutin particles ameliorate DSS-induced acute and chronic colitis via anti-inflammatory and antioxidant protection of the intestinal epithelial barrier[J]. J Agric Food Chem, 2023, 71(34): 12715-12729.
doi: 10.1021/acs.jafc.3c03195 |
| [27] |
Ishihara J, Arai K, Kudo T, et al. Serum zinc and selenium in children with inflammatory bowel disease: a multicenter study in Japan[J]. Dig Dis Sci, 2022, 67(6): 2485-2491.
doi: 10.1007/s10620-021-07078-z |
| [28] |
El Koofy NM, Moawad EMI, Yassin NA, et al. Basic anthropometry, micronutrients status and growth velocity of patients with early-onset inflammatory bowel disease: a prospective cohort study[J]. Arab J Gastroenterol, 2022, 23(4): 270-276.
doi: 10.1016/j.ajg.2022.06.004 pmid: 35918289 |
| [29] |
Ehrlich S, Mark AG, Rinawi F, et al. Micronutrient deficiencies in children with inflammatory bowel diseases[J]. Nutr Clin Pract, 2020, 35(2): 315-322.
doi: 10.1002/ncp.10373 pmid: 31342601 |
| [30] |
Brownson E, Saunders J, Jatkowska A, et al. Micronutrient status and prediction of disease outcome in adults with inflammatory bowel disease receiving biologic therapy[J]. Inflamm Bowel Dis, 2024, 30(8): 1233-1240.
doi: 10.1093/ibd/izad174 |
| [31] |
Fritz J, Walia C, Elkadri A, et al. A systematic review of micronutrient deficiencies in pediatric inflammatory bowel disease[J]. Inflamm Bowel Dis, 2019, 25(3): 445-459.
doi: 10.1093/ibd/izy271 pmid: 30137322 |
| [32] |
Vasseur P, Dugelay E, Benamouzig R, et al. Dietary zinc intake and inflammatory bowel disease in the French NutriNet-Santé cohort[J]. Am J Gastroenterol, 2020, 115(8): 1293-1297.
doi: 10.14309/ajg.0000000000000688 pmid: 32467505 |
| [33] |
Salavatizadeh M, Soltanieh S, Chegini M, et al. Micronutrient intake and risk of ulcerative colitis: a meta-analysis of observational studies[J]. Clin Nutr ESPEN, 2022, 51: 152-159.
doi: 10.1016/j.clnesp.2022.07.008 pmid: 36184199 |
| [34] |
Siva S, Rubin DT, Gulotta G, et al. Zinc deficiency is associated with poor clinical outcomes in patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2017, 23(1): 152-157.
doi: 10.1097/MIB.0000000000000989 pmid: 27930412 |
| [35] |
Stochel-Gaudyn A, Fyderek K, Kościelniak P. Serum trace elements profile in the pediatric inflammatory bowel disease progress evaluation[J]. J Trace Elem Med Biol, 2019, 55: 121-126.
doi: S0946-672X(18)30675-8 pmid: 31345349 |
| [36] |
Sakurai K, Furukawa S, Katsurada T, et al. Effectiveness of administering zinc acetate hydrate to patients with inflammatory bowel disease and zinc deficiency: a retrospective observational two-center study[J]. Intest Res, 2022, 20(1): 78-89.
doi: 10.5217/ir.2020.00124 |
| [37] |
Miyaguchi K, Tsuzuki Y, Ichikawa Y, et al. Positive zinc intake and a Japanese diet rich in n-3 fatty acids induces clinical remission in patients with mild active ulcerative colitis: a randomized interventional pilot study[J]. J Clin Biochem Nutr, 2023, 72(1): 82-88.
doi: 10.3164/jcbn.22-72 pmid: 36777083 |
| [38] |
Keshteli AH, Valcheva R, Nickurak C, et al. Anti-inflammatory diet prevents subclinical colonic inflammation and alters metabolomic profile of ulcerative colitis patients in clinical remission[J]. Nutrients, 2022, 14(16): 3294.
doi: 10.3390/nu14163294 |
| [39] | Dragasevic S, Stankovic B, Kotur N, et al. Genetic aspects of micronutrients important for inflammatory bowel disease[J]. Life (Basel), 2022, 12(10): 1623. |
| [40] | 国家卫生健康委员会, 国家中医药管理局. 儿童急性感染性腹泻病诊疗规范(2020年版)[J]. 传染病信息, 2021, 34(1): 7-14. |
| National Health Commission of the People's Republic of China, National Administration of Traditional Chinese Medicine. Guidelines for the diagnosis and treatment of acute infectious diarrhea in children (2020 edition)[J]. Chuanranbing Xinxi, 2021, 34(1): 7-14. | |
| [41] | 儿童锌缺乏症临床防治专家共识编写专家组, 中国研究型医院学会儿科学专业委员会. 儿童锌缺乏症临床防治专家共识[J]. 儿科药学杂志, 2020, 26(3): 46-50. |
| Expert Group for the Development of the Clinical Prevention and Treatment Consensus on Zinc Deficiency in Children, Pediatrics Committee of Chinese Research Hospital Association. Expert consensus on clinical prevention and treatment of zinc deficiency in children[J]. Erke Yaoxue Zazhi, 2020, 26(3): 46-50. |
| [1] | 噁唑烷酮类抗生素儿童临床应用共识协作组, 中华医学会儿科学分会感染学组, 浙江省医学会儿科分会感染学组, 儿童少年健康与疾病国家临床医学研究中心. 儿童噁唑烷酮类抗生素临床应用与精准治疗专家共识[J]. 临床儿科杂志, 2026, 44(1): 1-16. |
| [2] | 陈丹, 任佳营, 孙利芳, 魏郑虎, 孙晓敏. 儿童重症肺炎支原体肺炎合并心脏内血栓的临床特征与预后:一项单中心回顾性研究[J]. 临床儿科杂志, 2026, 44(1): 17-24. |
| [3] | 刘敏, 王琪, 苏军, 崔利丹, 孙绘霞, 宁文慧. 肺炎支原体肺炎继发儿童感染性心内膜炎临床特征与诊治分析[J]. 临床儿科杂志, 2026, 44(1): 25-30. |
| [4] | 贾茹, 马燕, 俞群, 刘海平, 刘萍. 上海市市郊两区16岁以下儿童流感疫苗接种情况及影响因素分析[J]. 临床儿科杂志, 2026, 44(1): 31-37. |
| [5] | 吴进军, 熊昊, 曾辉, 陈智, 杨李, 孙鸣, 王卓, 杜宇, 祁闪闪, 王伟, 张兰男. 异基因造血干细胞移植联合化疗治疗儿童髓系肉瘤7例临床分析[J]. 临床儿科杂志, 2026, 44(1): 44-50. |
| [6] | 梁志如, 郭林梅, 王霏, 赵晓云. 狼疮性肠炎还是炎症性肠病:1例合并胃肠道症状的系统性红斑狼疮诊治报告[J]. 临床儿科杂志, 2026, 44(1): 56-63. |
| [7] | 张雯婷, 冯娟. 儿童应激性心肌病研究进展[J]. 临床儿科杂志, 2026, 44(1): 79-83. |
| [8] | . 儿童脊髓性肌萎缩症症状前治疗专家共识(2025版)[J]. 临床儿科杂志, 2025, 43(9): 643-651. |
| [9] | 张未, 汪洋, 邓文华, 吴亚斌. 14例原发性纤毛运动障碍临床表现、纤毛结构及基因特点分析[J]. 临床儿科杂志, 2025, 43(9): 680-685. |
| [10] | 项琳娟, 陈雪欣, 贾艳会, 吴宇航, 丛鑫, 李伟, 陈盈盈, 陈笋, 黄丽素. 儿童3型腺病毒肺炎预后影响因素分析[J]. 临床儿科杂志, 2025, 43(9): 686-691. |
| [11] | 常亚, 周昀箐, 王纪文, 吴鸿雁, 羊芳菲, 孙丽娜. 儿童先天性肌强直治疗3例报道[J]. 临床儿科杂志, 2025, 43(9): 692-697. |
| [12] | 汪洁, 吴彬, 张兰男, 陈开澜. 儿童肝脾T细胞淋巴瘤2例并文献复习[J]. 临床儿科杂志, 2025, 43(9): 698-704. |
| [13] | 叶泽慧, 姜小丽. 西罗莫司治疗儿童弥漫性肺淋巴管瘤病1例报告[J]. 临床儿科杂志, 2025, 43(9): 705-709. |
| [14] | 董素贞, 陈浩, 张志勇, 江帆. 低场强MRI在儿科和产前胎儿诊断领域中的应用[J]. 临床儿科杂志, 2025, 43(9): 710-715. |
| [15] | 周志璇, 王莹. 胰高血糖素样肽-2类似物在炎症性肠病中的应用进展[J]. 临床儿科杂志, 2025, 43(9): 716-722. |
|
||
沪公网安备 31011002000392号