临床儿科杂志 ›› 2025, Vol. 43 ›› Issue (9): 716-722.doi: 10.12372/jcp.2025.24e1343
• 文献综述 • 上一篇
收稿日期:
2024-12-12
录用日期:
2025-02-06
出版日期:
2025-09-15
发布日期:
2025-08-27
通讯作者:
王莹 电子信箱:wangying02@xinhuamed.com.cn
基金资助:
Received:
2024-12-12
Accepted:
2025-02-06
Published:
2025-09-15
Online:
2025-08-27
摘要:
胰高血糖素样肽-2(GLP-2)是一种由肠道L细胞分泌的多肽激素,主要通过与特异性受体结合,在肠道内发挥增加血流、促进营养吸收和增强屏障功能等多种生理作用。在肠道炎症的治疗中,GLP-2展现出抗炎、促进肠道屏障修复及调节肠道微生物群的多重机制,并在多项动物实验和临床试验中取得效果。本文总结了GLP-2及其类似物在炎症性肠病治疗中的研究进展,为未来研究及临床应用提供依据。
中图分类号:
周志璇, 王莹. 胰高血糖素样肽-2类似物在炎症性肠病中的应用进展[J]. 临床儿科杂志, 2025, 43(9): 716-722.
ZHOU Zhixuan, WANG Ying. Application progress of glucagon-like peptide-2 analogues in inflammatory bowel disease[J]. Journal of Clinical Pediatrics, 2025, 43(9): 716-722.
[1] |
Rosen MJ, Dhawan A, Saeed SA. Inflammatory bowel disease in children and adolescents[J]. JAMA Pediatr, 2015, 169(11): 1053-1060.
doi: 10.1001/jamapediatrics.2015.1982 pmid: 26414706 |
[2] |
Flynn S, Eisenstein S. Inflammatory bowel disease presentation and diagnosis[J]. Surg Clin North Am, 2019, 99(6): 1051-1062.
doi: S0039-6109(19)30090-8 pmid: 31676047 |
[3] |
Ramos GP, Papadakis KA. Mechanisms of disease: inflammatory bowel diseases[J]. Mayo Clin Proc, 2019, 94(1): 155-165.
doi: S0025-6196(18)30751-1 pmid: 30611442 |
[4] | Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis[J]. World J Gastroenterol, 2014, 20(1): 91-99. |
[5] |
Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease[J]. Clin J Gastroenterol, 2018, 11(1): 1-10.
doi: 10.1007/s12328-017-0813-5 pmid: 29285689 |
[6] | N MN, Bourke A, Subramanian S. Review article: novel therapies in inflammatory bowel disease - an update for clinicians[J]. Aliment Pharmacol Ther, 2024, 60(9): 1244-1260. |
[7] |
Drucker DJ, Yusta B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2[J]. Annu Rev Physiol, 2014, 76: 561-583.
doi: 10.1146/annurev-physiol-021113-170317 pmid: 24161075 |
[8] |
Burness CB, Mccormack PL. Teduglutide: a review of its use in the treatment of patients with short bowel syndrome[J]. Drugs, 2013, 73(9): 935-947.
doi: 10.1007/s40265-013-0070-y pmid: 23729002 |
[9] |
Estall JL, Drucker DJ. Glucagon-like peptide-2[J]. Annu Rev Nutr, 2006, 26: 391-411.
pmid: 16602931 |
[10] |
Drucker DJ, Shi Q, Crivici A, et al. Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV[J]. Nat Biotechnol, 1997, 15(7): 673-677.
pmid: 9219272 |
[11] |
Kocoshis SA, Merritt RJ, Hill S, et al. Safety and efficacy of teduglutide in pediatric patients with intestinal failure due to short bowel syndrome: a 24-week, phase III study[J]. JPEN J Parenter Enteral Nutr, 2020, 44(4): 621-631.
doi: 10.1002/jpen.1690 pmid: 31495952 |
[12] |
Hargrove DM, Alagarsamy S, Croston G, et al. Pharmacological characterization of apraglutide, a novel long-acting peptidic glucagon-like peptide-2 agonist, for the treatment of short bowel syndrome[J]. J Pharmacol Exp Ther, 2020, 373(2): 193-203.
doi: 10.1124/jpet.119.262238 pmid: 32075870 |
[13] |
Bolognani F, Kruithof AC, Schulthess P, et al. Characterization of the pharmacokinetic and pharmaco-dynamic profile of apraglutide, a glucagon-like peptide-2 analog, in healthy volunteers[J]. J Pharmacol Exp Ther, 2023, 386(2): 129-137.
doi: 10.1124/jpet.123.001582 pmid: 37316329 |
[14] | Pironi L. Intestinal adaptation and rehabilitation in adults with short bowel syndrome[J]. Curr Opin Clin Nutr Metab Care, 2024, 27(5): 457-461. |
[15] | Eliasson J, Hvistendahl MK, Freund N, et al. Apraglutide, a novel glucagon-like peptide-2 analog, improves fluid absorption in patients with short bowel syndrome intestinal failure: Findings from a placebo-controlled, randomized phase 2 trial[J]. JPEN J Parenter Enteral Nutr, 2022, 46(4): 896-904. |
[16] | Naimi RM, Hvistendahl M, Enevoldsen LH, et al. Glepaglutide, a novel long-acting glucagon-like peptide-2 analogue, for patients with short bowel syndrome: a randomised phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2019, 4(5): 354-363. |
[17] |
Austin K, Markovic MA, Brubaker PL. Current and potential therapeutic targets of glucagon-like peptide-2[J]. Curr Opin Pharmacol, 2016, 31: 13-18.
doi: S1471-4892(16)30093-5 pmid: 27580097 |
[18] |
Dong CX, Zhao W, Solomon C, et al. The intestinal epithelial insulin-like growth factor-1 receptor links glucagon-like peptide-2 action to gut barrier function[J]. Endocrinology, 2014, 155(2): 370-379.
doi: 10.1210/en.2013-1871 pmid: 24265452 |
[19] | El-Jamal N, Erdual E, Neunlist M, et al. Glugacon-like peptide-2: broad receptor expression, limited therapeutic effect on intestinal inflammation and novel role in liver regeneration[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307(3): G274- G285. |
[20] | Liu H, Xiao H, Lin S, et al. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis[J]. Front Pharmacol, 2024, 15: 1372399. |
[21] |
Yusta B, Matthews D, Koehler JA, et al. Localization of glucagon-like peptide-2 receptor expression in the mouse[J]. Endocrinology, 2019, 160(8): 1950-1963.
doi: 10.1210/en.2019-00398 pmid: 31237617 |
[22] |
Guan X, Karpen HE, Stephens J, et al. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow[J]. Gastroenterology, 2006, 130(1): 150-164.
doi: 10.1053/j.gastro.2005.11.005 pmid: 16401478 |
[23] |
Pedersen J, Pedersen NB, Brix SW, et al. The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine[J]. Peptides, 2015, 67: 20-28.
doi: 10.1016/j.peptides.2015.02.007 pmid: 25748021 |
[24] | Morrow NM, Hanson AA, Mulvihill EE. Distinct identity of GLP-1R, GLP-2R, and GIPR expressing cells and signaling circuits within the gastrointestinal tract[J]. Front Cell Dev Biol, 2021, 9: 703966. |
[25] | Drucker DJ, Yusta B, Boushey RP, et al. Human [Gly2] GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis[J]. Am J Physiol, 1999, 276(1): G79-G91. |
[26] | L'heureux MC, Brubaker PL. Glucagon-like peptide-2 and common therapeutics in a murine model of ulcerative colitis[J]. J Pharmacol Exp Ther, 2003, 306(1): 347-354. |
[27] |
Alavi K, Schwartz MZ, Palazzo JP, et al. Treatment of inflammatory bowel disease in a rodent model with the intestinal growth factor glucagon-like peptide-2[J]. J Pediatr Surg, 2000, 35(6): 847-851.
doi: 10.1053/jpsu.2000.6861 pmid: 10873024 |
[28] | Sigalet DL, Wallace LE, Holst JJ, et al. Enteric neural pathways mediate the anti-inflammatory actions of glucagon-like peptide 2[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 293(1): G211- G221. |
[29] | Ivory CP, Wallace LE, Mccafferty DM, et al. Interleukin-10-independent anti-inflammatory actions of glucagon-like peptide 2[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 295(6): G1202- G1210. |
[30] |
Wu J, Qi K, Xu Z, et al. Glucagon-like peptide-2-loaded microspheres as treatment for ulcerative colitis in the murine model[J]. J Microencapsul, 2015, 32(6): 598-607.
doi: 10.3109/02652048.2015.1065923 pmid: 26218715 |
[31] | Arab HH, Eid AH, Mahmoud AM, et al. Linagliptin mitigates experimental inflammatory bowel disease in rats by targeting inflammatory and redox signaling[J]. Life Sci, 2021, 273: 119295. |
[32] | Li D, Gao Y, Cui L, et al. Integrative analysis revealed the role of glucagon-like peptide-2 in improving experimental colitis in mice by inhibiting inflammatory pathways, regulating glucose metabolism, and modulating gut microbiota[J]. Front Microbiol, 2023, 14: 1174308. |
[33] |
Gu J, Liu J, Huang T, et al. The protective and anti-inflammatory effects of a modified glucagon-like peptide-2 dimer in inflammatory bowel disease[J]. Biochem Pharmacol, 2018, 155: 425-433.
doi: S0006-2952(18)30295-8 pmid: 30040929 |
[34] | Qi KK, Lv JJ, Wu J, et al. Therapeutic effects of different doses of polyethylene glycosylated porcine glucagon-like peptide-2 on ulcerative colitis in male rats[J]. BMC Gastroenterol, 2017, 17(1): 34. |
[35] | Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease[J]. Nature, 2007, 448(7152): 427-434. |
[36] | Mousa WK, Al Ali A. The gut microbiome advances precision medicine and diagnostics for inflammatory bowel diseases[J]. Int J Mol Sci, 2024, 25(20):11259. |
[37] | Alters SE, Mclaughlin B, Spink B, et al. GLP2-2G-XTEN: a pharmaceutical protein with improved serum half-life and efficacy in a rat Crohn's disease model[J]. PLoS One, 2012, 7(11): e50630. |
[38] | Yang PY, Zou H, Lee C, et al. Stapled, long-acting glucagon-like peptide 2 analog with efficacy in dextran sodium sulfate induced mouse colitis models[J]. J Med Chem, 2018, 61(7): 3218-3223. |
[39] | Ning MM, Yang WJ, Guan WB, et al. Dipeptidyl peptidase 4 inhibitor sitagliptin protected against dextran sulfate sodium-induced experimental colitis by potentiating the action of GLP-2[J]. Acta Pharmacol Sin, 2020, 41(11): 1446-1456. |
[40] | Han F, Ning M, Wang K, et al. Design and exploration of gut-restricted bifunctional molecule with TGR5 agonistic and DPP4 inhibitory effects for treating ulcerative colitis[J]. Eur J Med Chem, 2022, 242: 114697. |
[41] |
Marotti V, Xu Y, Bohns Michalowski C, et al. A nanoparticle platform for combined mucosal healing and immunomodulation in inflammatory bowel disease treatment[J]. Bioact Mater, 2024, 32: 206-221.
doi: 10.1016/j.bioactmat.2023.09.014 pmid: 37859689 |
[42] | Barros AS, Pinto S, Viegas J, et al. Orally delivered stimulus-sensitive nanomedicine to harness teduglutide efficacy in inflammatory bowel disease[J]. Small, 2024: e2402502. |
[43] | Borghini R, Caronna R, Donato G, et al. GLP-2 analog teduglutide in active Crohn's disease and short bowel syndrome: confirmation of anti-inflammatory role and future perspectives[J]. Dig Liver Dis, 2020, 52(6): 686-687. |
[44] |
Al Draiweesh S, Ma C, Gregor JC, et al. Teduglutide in patients with active Crohn's disease and short bowel syndrome[J]. Inflamm Bowel Dis, 2019, 25(9): e109.
doi: 10.1093/ibd/izz087 |
[45] | George AT, Li BH, Carroll RE. Off-label teduglutide therapy in non-intestinal failure patients with chronic malabsorption[J]. Dig Dis Sci, 2019, 64(6): 1599-1603. |
[46] |
Borghini R, Caronna R, Picarelli A, et al. Results of 12-month rescue treatment with Teduglutide in severely active and parenteral nutrition-dependent Crohn's disease[J]. Turk J Gastroenterol, 2017, 28(1): 73-74.
doi: 10.5152/tjg.2016.0587 pmid: 27991856 |
[47] |
Buchman AL, Katz S, Fang JC, et al. Teduglutide, a novel mucosally active analog of glucagon-like peptide-2 (GLP-2) for the treatment of moderate to severe Crohn's disease[J]. Inflamm Bowel Dis, 2010, 16(6): 962-973.
doi: 10.1002/ibd.21117 pmid: 19821509 |
[48] | Sigalet DL, Kravarusic D, Butzner D, et al. A pilot study examining the relationship among Crohn disease activity, glucagon-like peptide-2 signalling and intestinal function in pediatric patients[J]. Can J Gastroenterol, 2013, 27(10): 587-592. |
[49] |
Li D, Yang Y, Yin X, et al. Glucagon-like peptide (GLP) -2 improved colonizing bacteria and reduced severity of ulcerative colitis by enhancing the diversity and abundance of intestinal mucosa[J]. Bioengineered, 2021, 12(1): 5195-5209.
doi: 10.1080/21655979.2021.1958600 pmid: 34402720 |
[50] | 吴捷, 张添卓. 儿童炎症性肠病的研究现状及展望[J]. 临床儿科杂志, 2023, 41(11): 801-807. |
WU Jie, ZHANG Tianzhuo. An analysis of the present status and future prospects of pediatric inflammatory bowel disease[J]. Linchuang Erke Zazhi, 2023, 41(11): 801-807 | |
[51] | 庄严, 黄瑞文. 极早发型炎症性肠病发病机制研究进展[J]. 临床儿科杂志, 2023, 41(7): 549-555. |
ZHUANG Yan, HUANG Ruiwen. Advances in the pathogenesis of very early onset inflammatory bowel disease[J]. Linchuang Erke Zazhi, 2023, 41(7): 549-555. |
[1] | 岳阳, 张志华, 李玫, 刘志峰, 郭红梅. 英夫利昔单抗诱导治疗儿童克罗恩病疗效的预测指标分析[J]. 临床儿科杂志, 2025, 43(6): 426-431. |
[2] | 贾双珍, 孔琰, 刘前超, 朱艾琳, 吴捷. 儿童炎症性肠病的精准治疗研究与应用[J]. 临床儿科杂志, 2025, 43(3): 226-232. |
[3] | 黄柳芳, 吴博, 王莹. 儿童溃疡性结肠炎手术治疗的预测标志物分析[J]. 临床儿科杂志, 2025, 43(2): 120-127. |
[4] | 汪陈慧, 杨辉. 儿童克罗恩病早期筛查和诊断研究进展[J]. 临床儿科杂志, 2023, 41(9): 708-714. |
[5] | 庄严, 黄瑞文. 极早发型炎症性肠病发病机制研究进展[J]. 临床儿科杂志, 2023, 41(7): 549-555. |
[6] | 夏瑜, 葛文松, 杜陶子, 龚自珍, 肖冰, 梁黎黎, 王瑞芳, 杨奕, 邱文娟. 合并炎症性肠病的糖原累积病-Ⅰb型5例患儿SGLT2抑制剂治疗效果分析[J]. 临床儿科杂志, 2023, 41(4): 294-299. |
[7] | 吴捷, 张添卓. 儿童炎症性肠病的研究现状及展望[J]. 临床儿科杂志, 2023, 41(11): 801-807. |
[8] | 郑新国, 杨辉. 极早发型炎症性肠病11例临床特点分析[J]. 临床儿科杂志, 2023, 41(11): 815-819. |
[9] | 沈一燚, 练敏, 李玫, 郭红梅, 张志华, 闫坤龙, 陆妍, 金玉, 刘志峰. 86例婴儿结肠镜检查回顾性分析[J]. 临床儿科杂志, 2022, 40(11): 819-823. |
[10] | 王歆琼, 许春娣. 儿童炎症性肠病的精准治疗[J]. 临床儿科杂志, 2022, 40(11): 813-818. |
[11] | 孟颖颖,王玉环,唐子斐,等. 克罗恩病合并多发性大动脉炎1 例报告并文献复习[J]. 临床儿科杂志, 2021, 39(5): 360-. |
[12] | 刘婷,谢永武,曾萍,等. 青少年X 连锁凋亡抑制因子缺陷1 例报告并文献复习[J]. 临床儿科杂志, 2020, 38(3): 213-. |
[13] | 沈小钰,周 纬,丁 飞,等. 过敏性紫癜合并末端回肠炎1 例报告并文献复习[J]. 临床儿科杂志, 2019, 37(7): 520-. |
[14] | 李朝晖, 康文清, 张耀东, 许邦礼, 刘大鹏 . 新生儿炎症性肠病 2 例报告及文献复习#br#[J]. 临床儿科杂志, 2018, 36(2): 121-. |
[15] | 胡梦珑. 极早发炎症性肠病的研究进展#br#[J]. 临床儿科杂志, 2018, 36(10): 801-. |
|