临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (9): 708-714.doi: 10.12372/jcp.2023.22e0604
汪陈慧 综述, 杨辉 审校
收稿日期:
2022-04-27
出版日期:
2023-09-15
发布日期:
2023-09-05
基金资助:
Reviewer: WANG Chenhui, Reviser: YANG Hui
Received:
2022-04-27
Online:
2023-09-15
Published:
2023-09-05
摘要:
克罗恩病(CD)是一种慢性非特异性胃肠道炎症性疾病。儿童CD起病隐匿,临床表现缺乏特异性,早期诊断困难,导致并发症、手术率和致残率增加。早期筛查和诊断、及时干预可改善患儿的治疗效果和预后,提高患儿生存质量。文章就儿童CD的早期筛查和诊断进展进行综述。
汪陈慧, 杨辉. 儿童克罗恩病早期筛查和诊断研究进展[J]. 临床儿科杂志, 2023, 41(9): 708-714.
Reviewer: WANG Chenhui, Reviser: YANG Hui. Research progress on early screening and diagnosis of Crohn's disease in children[J]. Journal of Clinical Pediatrics, 2023, 41(9): 708-714.
[1] | 中华医学会儿科学分会消化学组, 中华医学会儿科学分会临床营养学组. 儿童炎症性肠病诊断和治疗专家共识[J]. 中华儿科杂志, 2019, 57(7): 501-507. |
[2] |
Kuenzig ME, Fung SG, Marderfeld L, et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: systematic review[J]. Gastroenterology, 2022, 162(4): 1147-1159.
doi: 10.1053/j.gastro.2021.12.282 pmid: 34995526 |
[3] |
Ricciuto A, Fish JR, Tomalty DE, et al. Diagnostic delay in Canadian children with inflammatory bowel disease is more common in Crohn's disease and associated with decreased height[J]. Arch Dis Child, 2018, 103(4): 319-326.
doi: 10.1136/archdischild-2017-313060 pmid: 28794097 |
[4] |
Ricciuto A, Mack DR, Huynh HQ, et al. Diagnostic delay is associated with complicated disease and growth impairment in paediatric Crohn's disease[J]. J Crohns Colitis, 2021, 15(3): 419-431.
doi: 10.1093/ecco-jcc/jjaa197 |
[5] | 赵茜茜, 李中跃. 2018年欧洲儿童胃肠病学、肝病学和营养协会波尔图炎症性肠病组关于儿童炎症性肠病内镜检查指导意见解读[J]. 临床儿科杂志, 2020, 38(5): 395-399. |
[6] |
Fraquelli M, Castiglione F, Calabrese E, et al. Impact of intestinal ultrasound on the management of patients with inflammatory bowel disease: how to apply scientific evidence to clinical practice[J]. Dig Liver Dis, 2020, 52(1): 9-18.
doi: 10.1016/j.dld.2019.10.004 |
[7] |
Dilillo D, Zuccotti GV, Galli E, et al. Noninvasive testing in the management of children with suspected inflammatory bowel disease[J]. Scand J Gastroenterol, 2019, 54(5): 586-591.
doi: 10.1080/00365521.2019.1604799 |
[8] |
Kang C, Yoon H, Park S, et al. Initial abdominal CT and laboratory findings prior to diagnosis of Crohn's disease in children[J]. Yonsei Med J, 2022, 63(7): 675-682.
doi: 10.3349/ymj.2022.63.7.675 pmid: 35748079 |
[9] |
Nardo GD, Esposito G, Ziparo C, et al. Enteroscopy in children and adults with inflammatory bowel disease[J]. World J Gastroenterol, 2020, 26(39): 5944-5958.
doi: 10.3748/wjg.v26.i39.5944 |
[10] |
Schooler GR, Hull NC, Mavis A, et al. MR imaging evaluation of inflammatory bowel disease in children: where are we now in 2019[J]. Magn Reson Imaging Clin N Am, 2019, 27(2): 291-300.
doi: S1064-9689(19)30007-8 pmid: 30910099 |
[11] |
Sieczkowska-Golub J, Marcinska B, Dadalski M, et al. Usefulness of colon assessment by magnetic resonance enterography in pediatric patients with inflammatory bowel disease-retrospective case series[J]. J Clin Med, 2021, 10(19): 4336.
doi: 10.3390/jcm10194336 |
[12] |
Dillman JR, Smith EA, Sanchez RJ, et al. Pediatric small bowel Crohn disease: correlation of US and MR enterography[J]. Radiographics, 2015, 35(3): 835-848.
doi: 10.1148/rg.2015140002 pmid: 25839736 |
[13] |
Hakim A, Alexakis C, Pilcher J, et al. Comparison of small intestinal contrast ultrasound with magnetic resonance enterography in pediatric Crohn's disease[J]. JGH Open, 2020, 4(2): 126-131.
doi: 10.1002/jgh3.12228 pmid: 32280754 |
[14] | 唐晓艳, 李正红, 董梅, 等. 54例儿童克罗恩病肠外表现和肠道并发症分析[J]. 中国当代儿科杂志, 2020, 22(5): 478-481. |
[15] | 倪耿欢, 赵宏伟, 亓昌珍, 等. 克罗恩病肛瘘与非克罗恩病肛瘘的MRI特征对比分析[J]. 中华放射学杂志, 2019, 53(4): 305-309. |
[16] | 杨辉, 金玉, 李玫, 等. 儿童炎症性肠病生物学标志物检测及其临床意义[J]. 临床儿科杂志, 2016, 34(10): 721-725. |
[17] |
Ashton JJ, Harden A, Beattie RM. Paediatric inflammatory bowel disease: improving early diagnosis[J]. Arch Dis Child, 2018, 103(4): 307-308.
doi: 10.1136/archdischild-2017-313955 pmid: 29175974 |
[18] | 尹杨艳, 陈丹丹, 桂冬梅. 粪便炎症指标检测对儿童炎症性肠病的诊断价值[J]. 中国临床医生杂志, 2021, 49(4): 487-490. |
[19] |
Mizuochi T, Arai K, Kudo T, et al. Antibodies to Crohn's disease peptide 353 as a diagnostic marker for pediatric Crohn's disease: a prospective multicenter study in Japan[J]. J Gastroenterol, 2020, 55(5): 515-522.
doi: 10.1007/s00535-019-01661-y pmid: 31980893 |
[20] |
Shpoliansky M, Roggenbuck D, Pinsker M, et al. Antibodies against glycoprotein 2 are specific biomarkers for pediatric Crohn's disease[J]. Dig Dis Sci, 2021, 66(8): 2619-2626.
doi: 10.1007/s10620-020-06589-5 |
[21] |
Deutschmann C, Sowa M, Murugaiyan J, et al. Identification of chitinase-3-like protein 1 as a novel neutrophil antigenic target in Crohn's disease[J]. J Crohns Colitis, 2019, 13(7): 894-904.
doi: 10.1093/ecco-jcc/jjz012 pmid: 30753386 |
[22] | Alamdari-Palangi V, Vahedi F, Shabaninejad Z, et al. microRNA in inflammatory bowel disease at a glance[J]. Eur J Gastroenterol Hepatol, 2021, 32(2): 140-148. |
[23] |
Szűcs D, Béres NJ, Rokonay R, et al. Increased duodenal expression of miR-146a and -155 in pediatric Crohn's disease[J]. World J Gastroenterol, 2016, 22(26): 6027-6035.
doi: 10.3748/wjg.v22.i26.6027 |
[24] |
Judit Béres N, Kiss Z, Müller KE, et al. Role of microRNA-223 in the regulation of poly (ADP-ribose) polymerase in pediatric patients with Crohn's disease[J]. Scand J Gastroenterol, 2018, 53(9): 1066-1073.
doi: 10.1080/00365521.2018.1498915 |
[25] |
Jabandziev P, Bohosova J, Pinkasova T, et al. The emerging role of noncoding RNAs in pediatric inflammatory bowel disease[J]. Inflamm Bowel Dis, 2020, 26(7): 985-993.
doi: 10.1093/ibd/izaa009 pmid: 32009179 |
[26] |
Cui G, Fan Q, Li Z, et al. Evaluation of anti-TNF therapeutic response in patients with inflammatory bowel disease: current and novel biomarkers[J]. EBioMedicine, 2021, 66: 103329.
doi: 10.1016/j.ebiom.2021.103329 |
[27] |
Torres J, Petralia F, Sato T, et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up to 5 years before diagnosis[J]. Gastroenterology, 2020, 159(1): 96-104.
doi: S0016-5085(20)30327-9 pmid: 32165208 |
[28] |
Starr AE, Deeke SA, Ning Z, et al. Proteomic analysis of ascending colon biopsies from a paediatric inflammatory bowel disease inception cohort identifies protein biomarkers that differentiate Crohn's disease from UC[J]. Gut, 2017, 66(9): 1573-1583.
doi: 10.1136/gutjnl-2015-310705 pmid: 27216938 |
[29] |
Sila S, Jelić M, Trivić I, et al. Altered gut microbiota is present in newly diagnosed pediatric patients with inflammatory bowel disease[J]. J Pediatr Gastroenterol Nutr, 2020, 70(4): 497-502.
doi: 10.1097/MPG.0000000000002611 |
[30] |
Kansal S, Catto-Smith AG, Boniface K, et al. The microbiome in paediatric Crohn's disease-a longitudinal, prospective, single-centre study[J]. J Crohns Colitis, 2019, 13(8): 1044-1054.
doi: 10.1093/ecco-jcc/jjz016 |
[31] |
Kowalska-Duplaga K, Gosiewski T, Kapusta P, et al. Differences in the intestinal microbiome of healthy children and patients with newly diagnosed Crohn's disease[J]. Sci Rep, 2019, 9(1): 18880.
doi: 10.1038/s41598-019-55290-9 pmid: 31827191 |
[32] |
Putignani L, Oliva S, Isoldi S, et al. Fecal and mucosal microbiota profiling in pediatric inflammatory bowel diseases[J]. Eur J Gastroenterol Hepatol, 2021, 33(11): 1376-1386.
doi: 10.1097/MEG.0000000000002050 |
[33] |
Fitzgerald RS, Sanderson IR, Claesson MJ. Paediatric inflammatory bowel disease and its relationship with the microbiome[J]. Microb Ecol, 2021, 82(4): 833-844.
doi: 10.1007/s00248-021-01697-9 pmid: 33666710 |
[34] |
Papa E, Docktor M, Smillie C, et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease[J]. PLoS One, 2012, 7(6): e39242.
doi: 10.1371/journal.pone.0039242 |
[35] |
El Mouzan M, Wang F, Al Mofarreh M, et al. Fungal microbiota profile in newly diagnosed treatment-naïve children with Crohn's disease[J]. J Crohns Colitis, 2017, 11(5): 586-592.
doi: 10.1093/ecco-jcc/jjw197 pmid: 27811291 |
[36] |
El Mouzan MI, Korolev KS, Al Mofarreh MA, et al. Fungal dysbiosis predicts the diagnosis of pediatric Crohn's disease[J]. World J Gastroenterol, 2018, 24(39): 4510-4516.
doi: 10.3748/wjg.v24.i39.4510 |
[37] | Kolho KL, Pessia A, Jaakkola T, et al. Faecal and serum metabolomics in paediatric inflammatory bowel disease[J]. J Crohns Colitis, 2017, 11(3): 321-334. |
[38] |
Daniluk U, Daniluk J, Kucharski R, et al. Untargeted metabolomics and inflammatory markers profiling in children with Crohn's disease and ulcerative colitis-a preliminary study[J]. Inflamm Bowel Dis, 2019, 25(7): 1120-1128.
doi: 10.1093/ibd/izy402 pmid: 30772902 |
[39] |
Filimoniuk A, Daniluk U, Samczuk P, et al. Metabolomic profiling in children with inflammatory bowel disease[J]. Adv Med Sci, 2020, 65(1): 65-70.
doi: 10.1016/j.advms.2019.12.009 |
[40] |
Filimoniuk A, Blachnio-Zabielska A, Imierska M, et al. Sphingolipid analysis indicate lactosylceramide as a potential biomarker of inflammatory bowel disease in children[J]. Biomolecules, 2020, 10(7): 1083.
doi: 10.3390/biom10071083 |
[41] |
Bauset C, Gisbert-Ferrándiz L, Cosín-Roger J. Meta-bolomics as a promising resource identifying potential biomarkers for inflammatory bowel disease[J]. J Clin Med, 2021, 10(4): 622.
doi: 10.3390/jcm10040622 |
[42] |
Martin FP, Su MM, Xie GX, et al. Urinary metabolic insights into host-gut microbial interactions in healthy and IBD children[J]. World J Gastroenterol, 2017, 23(20): 3643-3654.
doi: 10.3748/wjg.v23.i20.3643 |
[43] |
Yamamoto M, Shanmuganathan M, Hart L, et al. Urinary metabolites enable differential diagnosis and therapeutic monitoring of pediatric inflammatory bowel disease[J]. Metabolites, 2021, 11(4): 245.
doi: 10.3390/metabo11040245 |
[44] |
Vernia F, Valvano M, Fabiani S, et al. Are volatile organic compounds accurate markers in the assessment of colorectal cancer and inflammatory bowel diseases? A review[J]. Cancers (Basel), 2021, 13(10): 2361.
doi: 10.3390/cancers13102361 |
[45] | Patel N, Alkhouri N, Eng K, et al. Metabolomic analysis of breath volatile organic compounds reveals unique breathprints in children with inflammatory bowel disease: a pilot study[J]. Aliment Pharmacol Ther, 2014, 40(5): 498-507. |
[46] |
Monasta L, Pierobon C, Princivalle A, et al. Inflammatory bowel disease and patterns of volatile organic compounds in the exhaled breath of children: a case-control study using Ion Molecule Reaction-Mass Spectrometry[J]. PLoS One, 2017, 12(8): e0184118.
doi: 10.1371/journal.pone.0184118 |
[47] |
Bosch S, van Gaal N, Zuurbier RP, et al. Differentiation between pediatric irritable bowel syndrome and inflammatory bowel disease based on fecal scent: proof of principle study[J]. Inflamm Bowel Dis, 2018, 24(11): 2468-2475.
doi: 10.1093/ibd/izy151 pmid: 29788410 |
[1] | 邹丽萍. 儿童脑病:一类与各种疾病都相关的疾病[J]. 临床儿科杂志, 2023, 41(9): 641-643. |
[2] | 张炜华, 邹丽萍, 任海涛, 关鸿志. 警惕儿童自身免疫性脑炎诊治陷阱[J]. 临床儿科杂志, 2023, 41(9): 644-649. |
[3] | 侯池, 陈文雄, 廖寅婷, 吴文晓, 田杨, 朱海霞, 彭炳蔚, 曾意茹, 吴汶霖, 陈宗宗, 李小晶. 儿童自身免疫性胶质纤维酸性蛋白星形胶质细胞病临床分析[J]. 临床儿科杂志, 2023, 41(9): 656-660. |
[4] | 杨雅婷, 蔡玥昊, 方琼, 陈琅, 陈巧彬, 林志, 吴菲菲, 林萌. 儿童特发性和症状性枕叶癫痫临床分析[J]. 临床儿科杂志, 2023, 41(9): 668-673. |
[5] | 侯若琳, 吴静, 李玲. 头颅MRI以脑膜增厚伴强化表现的儿童自身免疫性脑炎[J]. 临床儿科杂志, 2023, 41(9): 674-679. |
[6] | 武跃芳, 孙艳玲, 武万水, 杜淑旭, 李苗, 孙黎明. G4型髓母细胞瘤患儿预后影响因素及生存状况分析[J]. 临床儿科杂志, 2023, 41(9): 686-691. |
[7] | 孙娟, 李海英, 贾沛生, 王怀立. 儿童暴发性心肌炎12例临床分析[J]. 临床儿科杂志, 2023, 41(9): 692-696. |
[8] | 沈楠, 杜白露. 血液肿瘤患儿侵袭性真菌感染诊治和管理策略[J]. 临床儿科杂志, 2023, 41(8): 571-577. |
[9] | 徐贝雪, 刘泉波. 儿童侵袭性肺部真菌感染195例临床分析[J]. 临床儿科杂志, 2023, 41(8): 584-588. |
[10] | 陈虹宇, 刘梓豪, 王和平, 廖翠娟, 李莉, 王文建, 赖建威. 不可分型流感嗜血杆菌生物膜在儿童慢性肺部感染中的作用[J]. 临床儿科杂志, 2023, 41(8): 589-593. |
[11] | 康磊, 郭芳, 李立方, 白新凤, 程彩云, 徐梅先. 宏基因组二代测序在儿童内脏利什曼病相关噬血淋巴组织细胞增生症中的应用价值[J]. 临床儿科杂志, 2023, 41(8): 594-598. |
[12] | 邬晓玲, 吕铁伟. 儿童特发性左室室性心动过速临床分析[J]. 临床儿科杂志, 2023, 41(8): 599-603. |
[13] | 孙智才, 刘玉玲, 李小琳, 潘晓芬. 儿童原发性肾病综合征合并肾上腺危象15例临床分析[J]. 临床儿科杂志, 2023, 41(8): 610-612. |
[14] | 王红霞, 潘翔, 逯军. DHTKD1基因复合杂合变异致α-酮己二酸尿症1例报告[J]. 临床儿科杂志, 2023, 41(8): 624-628. |
[15] | 习必鑫, 胡群, 刘爱国. 儿童异基因造血干细胞移植后闭塞性细支气管炎综合征研究进展[J]. 临床儿科杂志, 2023, 41(8): 629-633. |
|