临床儿科杂志 ›› 2022, Vol. 40 ›› Issue (11): 813-818.doi: 10.12372/jcp.2022.22e1048
王歆琼, 许春娣
收稿日期:
2022-07-28
出版日期:
2022-11-15
发布日期:
2022-11-10
作者简介:
青年编委 王歆琼,博士,ORCID:0000-0003-0057-3653,医学博士,上海交通大学医学院附属瑞金医院儿内科副主任医师。兼任中华医学会儿科分会消化学组青年委员、中国妇幼保健协会妇幼微创专业委员会小儿消化胃肠学组青年委员、《临床儿科杂志》青年编委。主要从事儿童消化系统疾病的诊治和内镜操作以及相关疾病的基础研究工作。2017—2019年曾于美国犹他大学风湿免疫实验室访学。主持国家自然科学基金青年项目1项,参与国家级及省部级课题多项,国内外学术期刊上发表论文20余篇。
基金资助:
WANG Xinqiong, XU Chundi
Received:
2022-07-28
Online:
2022-11-15
Published:
2022-11-10
摘要:
我国儿童炎症性肠病(inflammatory bowel disease,IBD)的发病率不断上升,精准治疗可提高患儿的临床缓解及黏膜愈合率,提高儿童IBD的诊治水平。儿童IBD的精准治疗的发展主要基于对疾病发生发展认识的不断深入。生物制剂应用的不断优化可提高患儿的治疗效果,减轻经济负担。随着基因组学、转录组学、肠道微生态学及代谢组学等学科的发展及人工智能算法的协助,新的生物标志物不断被研究发现和应用。通过对儿童IBD精准化治疗的推动,IBD诊治策略将有新的改革和发展。
王歆琼, 许春娣. 儿童炎症性肠病的精准治疗[J]. 临床儿科杂志, 2022, 40(11): 813-818.
WANG Xinqiong, XU Chundi. Precision treatment in pediatric inflammatory bowel disease[J]. Journal of Clinical Pediatrics, 2022, 40(11): 813-818.
[1] |
Kuenzig ME, Fung SG, Marderfeld L, et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: systematic review[J]. Gastroenterology, 2022, 162(4): 1147-1159.
doi: 10.1053/j.gastro.2021.12.282 pmid: 34995526 |
[2] |
Wang XQ, Zhang Y, Xu CD, et al. Inflammatory bowel disease in Chinese children: a multicenter analysis over a decade from Shanghai[J]. Inflamm Bowel Dis, 2013, 19(2): 423-428.
doi: 10.1097/MIB.0b013e318286f9f2 |
[3] | 中华医学会儿科学分会消化学组,中华医学会儿科学分会临床营养学组. 儿童炎症性肠病诊断和治疗专家共识[J]. 中华儿科杂志, 2019, 57(7): 501-507. |
[4] |
Solberg IC, Vatn MH, Høie O, et al. Clinical course in Crohn's disease: results of a Norwegian population-based ten-year follow-up study[J]. Clin Gastroenterol Hepatol, 2007, 5(12): 1430-1438.
doi: 10.1016/j.cgh.2007.09.002 |
[5] |
Verstockt B, Noor NM, Marigorta UM, et al. Results of the seventh scientific workshop of ECCO: precision medicine in IBD-disease outcome and response to therapy[J]. J Crohns Colitis, 2021, 15(9): 1431-1442.
doi: 10.1093/ecco-jcc/jjab050 pmid: 33730756 |
[6] |
van Rheenen PF, Aloi M, Assa A, et al. The medical management of paediatric Crohn's disease: an ECCO-ESPGHAN guideline update[J]. J Crohns Colitis, 2020, 7: 1-24.
doi: 10.1016/j.crohns.2012.09.005 |
[7] |
Siegel CA, Horton H, Siegel LS, et al. A validated web-based tool to display individualised Crohn's disease predicted outcomes based on clinical, serologic and genetic variables[J]. Aliment Pharmacol Ther, 2016, 43(2): 262-271.
doi: 10.1111/apt.13460 |
[8] |
Billiet T, Papamichael K, de Bruyn M, et al. A matrix-based model predicts primary response to infliximab in Crohn's disease[J]. J Crohns Colitis, 2015, 9(12): 1120-1126.
doi: 10.1093/ecco-jcc/jjv156 pmid: 26351386 |
[9] |
Singh N, Rabizadeh S, Jossen J, et al. Multi-center experience of vedolizumab effectiveness in pediatric inflammatory bowel disease[J]. Inflamm Bowel Dis, 2016, 22(9): 2121-2126.
doi: 10.1097/MIB.0000000000000865 pmid: 27542130 |
[10] |
Fang S, Song Y, Zhang C, et al. Efficacy and safety of vedolizumab for pediatrics with inflammatory bowel disease: a systematic review[J]. BMC Pediatr, 2022, 22(1): 175.
doi: 10.1186/s12887-022-03229-x pmid: 35379216 |
[11] |
Dulai PS, Boland BS, Singh S, et al. Development and validation of a scoring system to predict outcomes of vedolizumab treatment in patients with Crohn's disease[J]. Gastroenterology, 2018, 155(3): 687-695.
doi: 10.1053/j.gastro.2018.05.039 |
[12] |
Dulai PS, Singh S, Vande Casteele N, et al. Development and validation of clinical scoring tool to predict outcomes of treatment with vedolizumab in patients with ulcerative colitis[J]. Clin Gastroenterol Hepatol, 2020, 18(13): 2952-2961.
doi: 10.1016/j.cgh.2020.02.010 |
[13] |
Kakiuchi T, Yoshiura M. Japanese pediatric patient with moderately active ulcerative colitis successfully treated with ustekinumab: a case report[J]. Medicine (Baltimore), 2022, 101(7): e28873.
doi: 10.1097/MD.0000000000028873 |
[14] |
Fujita Y, Sugaya T, Tanaka T, et al. Ustekinumab as the first biological agent for Crohn's disease in a 10-year-old girl[J]. Tohoku J Exp Med, 2021, 255(1): 57-60.
doi: 10.1620/tjem.255.57 pmid: 34588346 |
[15] |
Dolinger MT, Spencer EA, Lai J, et al. Dual biologic and small molecule therapy for the treatment of refractory pediatric inflammatory bowel disease[J]. Inflamm Bowel Dis, 2021, 27(8): 1210-1214.
doi: 10.1093/ibd/izaa277 pmid: 33125058 |
[16] | 许旭, 肖园, 邱文娟, 等. 糖原累积病Ⅰb型并发克罗恩病一例[J]. 中华儿科杂志, 2017, 55(2): 144-145. |
[17] |
Papamichael K, Chachu KA, Vajravelu RK, et al. Improved long-term outcomes of patients with inflammatory bowel disease receiving proactive compared with reactive monitoring of serum concentrations of infliximab[J]. Clin Gastroenterol Hepatol, 2017, 15(10): 1580-1588.
doi: 10.1016/j.cgh.2017.03.031 |
[18] |
Vande Casteele N, Ferrante M, Van Assche G, et al. Trough concentrations of infliximab guide dosing for patients with inflammatory bowel disease[J]. Gastroenterology, 2015, 148(7): 1320-1329.
doi: 10.1053/j.gastro.2015.02.031 pmid: 25724455 |
[19] | Nguyen NH, Solitano V, Vuyyuru SK, et al. Proactive therapeutic drug monitoring versus conventional management for inflammatory bowel diseases: a systematic review and meta-analysis[J]. Gastroenterology, 2022, 24(22): 670-679. |
[20] |
Alsoud D, Vermeire S, Verstockt B. Monitoring vedolizumab and ustekinumab drug levels in patients with inflammatory bowel disease: hype or hope?[J]. Curr Opin Pharmacol, 2020, 55: 17-30.
doi: 10.1016/j.coph.2020.09.002 pmid: 33039940 |
[21] |
Colombel JF, Adedokun OJ, Gasink C, et al. Combination therapy with infliximab and azathioprine improves infliximab pharmacokinetic features and efficacy: a post hoc analysis[J]. Clin Gastroenterol Hepatol, 2019, 17(8): 1525-1532.
doi: 10.1016/j.cgh.2018.09.033 |
[22] |
Warner B, Johnston E, Arenas-Hernandez M, et al. A practical guide to thiopurine prescribing and monitoring in IBD[J]. Frontline Gastroenterol, 2018, 9(1): 10-15.
doi: 10.1136/flgastro-2016-100738 |
[23] | Bak-Drabik K, Adamczyk P, Duda-Wronska J, et al. Usefulness of measuring thiopurine metabolites in children with inflammatory bowel disease and autoimmunological hepatitis, treated with azathioprine[J]. Gastroenterol Res Pract, 2021, 2021: 9970019. |
[24] |
Simsek M, Deben DS, Horjus CS, et al. Sustained effectiveness, safety and therapeutic drug monitoring of tioguanine in a cohort of 274 IBD patients intolerant for conventional therapies[J]. Aliment Pharmacol Ther, 2019, 50(1): 54-65.
doi: 10.1111/apt.15280 |
[25] |
Moriyama T, Nishii R, Perez-Andreu V, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity[J]. Nat Genet, 2016, 48(4): 367-373.
doi: 10.1038/ng.3508 pmid: 26878724 |
[26] |
Heap GA, Weedon MN, Bewshea CM, et al. HLA-DQA1-HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants[J]. Nat Genet, 2014, 46(10): 1131-1134.
doi: 10.1038/ng.3093 pmid: 25217962 |
[27] |
Verstockt B, Parkes M, Lee JC. How do we predict a patient's disease course and whether they will respond to specific treatments?[J]. Gastroenterology, 2022, 162(5): 1383-1395.
doi: 10.1053/j.gastro.2021.12.245 |
[28] |
Colombel JF, Panaccione R, Bossuyt P, et al. Effect of tight control management on Crohn's disease (CALM): a multicentre, randomised, controlled phase 3 trial[J]. Lancet, 2017, 390(10114): 2779-2789.
doi: 10.1016/S0140-6736(17)32641-7 |
[29] |
West NR, Hegazy AN, Owens BMJ, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease[J]. Nat Med, 2017, 23(5):579-589.
doi: 10.1038/nm.4307 pmid: 28368383 |
[30] |
Kugathasan S, Denson LA, Walters TD, et al. Prediction of complicated disease course for children newly diagnosed with Crohn's disease: a multicentre inception cohort study[J]. Lancet, 2017, 389(10080): 1710-1718.
doi: S0140-6736(17)30317-3 pmid: 28259484 |
[31] |
Martin JC, Chang C, Boschetti G, et al. Single-cell analysis of Crohn's disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy[J]. Cell, 2019, 178(6): 1493-1508.
doi: S0092-8674(19)30896-7 pmid: 31474370 |
[32] |
Nayar S, Morrison JK, Giri M, et al. A myeloid-stromal niche and gp130 rescue in NOD2-driven Crohn's disease[J]. Nature, 2021, 593(7858): 275-281.
doi: 10.1038/s41586-021-03484-5 |
[33] |
Morilla I, Uzzan M, Laharie D, et al. Colonic MicroRNA profiles, identified by a deep learning algorithm, that predict responses to therapy of patients with acute severe ulcerative colitis[J]. Clin Gastroenterol Hepatol, 2019, 17(5): 905-913.
doi: 10.1016/j.cgh.2018.08.068 |
[34] |
Wang X, Xiao Y, Xu X, et al. Characteristics of fecal microbiota and machine learning strategy for fecal invasive biomarkers in pediatric inflammatory bowel disease[J]. Front Cell Infect Microbiol, 2021, 11: 711884.
doi: 10.3389/fcimb.2021.711884 |
[35] |
Wang Y, Gao X, Ghozlane A, et al. Characteristics of faecal microbiota in paediatric Crohn's disease and their dynamic changes during infliximab therapy[J]. J Crohns Colitis, 2018, 12(3): 337-346.
doi: 10.1093/ecco-jcc/jjx153 pmid: 29194468 |
[36] |
Takaishi H, Matsuki T, Nakazawa A, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease[J]. Int J Med Microbiol, 2008, 298(5-6): 463-472.
pmid: 17897884 |
[37] |
Borren NZ, Plichta D, Joshi AD, et al. Multi-"-Omics" profiling in patients with quiescent inflammatory bowel disease identifies biomarkers predicting relapse[J]. Inflamm Bowel Dis, 2020, 26(10): 1524-1532.
doi: 10.1093/ibd/izaa183 pmid: 32766830 |
[1] | 邹丽萍. 儿童脑病:一类与各种疾病都相关的疾病[J]. 临床儿科杂志, 2023, 41(9): 641-643. |
[2] | 张炜华, 邹丽萍, 任海涛, 关鸿志. 警惕儿童自身免疫性脑炎诊治陷阱[J]. 临床儿科杂志, 2023, 41(9): 644-649. |
[3] | 侯池, 陈文雄, 廖寅婷, 吴文晓, 田杨, 朱海霞, 彭炳蔚, 曾意茹, 吴汶霖, 陈宗宗, 李小晶. 儿童自身免疫性胶质纤维酸性蛋白星形胶质细胞病临床分析[J]. 临床儿科杂志, 2023, 41(9): 656-660. |
[4] | 杨雅婷, 蔡玥昊, 方琼, 陈琅, 陈巧彬, 林志, 吴菲菲, 林萌. 儿童特发性和症状性枕叶癫痫临床分析[J]. 临床儿科杂志, 2023, 41(9): 668-673. |
[5] | 侯若琳, 吴静, 李玲. 头颅MRI以脑膜增厚伴强化表现的儿童自身免疫性脑炎[J]. 临床儿科杂志, 2023, 41(9): 674-679. |
[6] | 武跃芳, 孙艳玲, 武万水, 杜淑旭, 李苗, 孙黎明. G4型髓母细胞瘤患儿预后影响因素及生存状况分析[J]. 临床儿科杂志, 2023, 41(9): 686-691. |
[7] | 孙娟, 李海英, 贾沛生, 王怀立. 儿童暴发性心肌炎12例临床分析[J]. 临床儿科杂志, 2023, 41(9): 692-696. |
[8] | 汪陈慧, 杨辉. 儿童克罗恩病早期筛查和诊断研究进展[J]. 临床儿科杂志, 2023, 41(9): 708-714. |
[9] | 沈楠, 杜白露. 血液肿瘤患儿侵袭性真菌感染诊治和管理策略[J]. 临床儿科杂志, 2023, 41(8): 571-577. |
[10] | 徐贝雪, 刘泉波. 儿童侵袭性肺部真菌感染195例临床分析[J]. 临床儿科杂志, 2023, 41(8): 584-588. |
[11] | 陈虹宇, 刘梓豪, 王和平, 廖翠娟, 李莉, 王文建, 赖建威. 不可分型流感嗜血杆菌生物膜在儿童慢性肺部感染中的作用[J]. 临床儿科杂志, 2023, 41(8): 589-593. |
[12] | 康磊, 郭芳, 李立方, 白新凤, 程彩云, 徐梅先. 宏基因组二代测序在儿童内脏利什曼病相关噬血淋巴组织细胞增生症中的应用价值[J]. 临床儿科杂志, 2023, 41(8): 594-598. |
[13] | 邬晓玲, 吕铁伟. 儿童特发性左室室性心动过速临床分析[J]. 临床儿科杂志, 2023, 41(8): 599-603. |
[14] | 孙智才, 刘玉玲, 李小琳, 潘晓芬. 儿童原发性肾病综合征合并肾上腺危象15例临床分析[J]. 临床儿科杂志, 2023, 41(8): 610-612. |
[15] | 王红霞, 潘翔, 逯军. DHTKD1基因复合杂合变异致α-酮己二酸尿症1例报告[J]. 临床儿科杂志, 2023, 41(8): 624-628. |
|