[1] |
Gorga SM, Sahay RD, Askenazi DJ, et al. Fluid overload and fluid removal in pediatric patients on extracorporeal membrane oxygenation requiring continuous renal replacement therapy: a multicenter retrospective cohort study[J]. Pediatr Nephrol, 2020, 35(5): 871-882.
doi: 10.1007/s00467-019-04468-4
|
[2] |
Combes A, Peek G, Hajage D, et al. ECMO for severe ARDS: systematic review and individual patient data meta-analysis[J]. Intensive Care Med, 2020, 46(11): 2048-2057.
doi: 10.1007/s00134-020-06248-3
pmid: 33021684
|
[3] |
Gao S, Liu G, Yan S, et al. Outcomes from adult veno-arterial extracorporeal membrane oxygenation in a cardiovascular disease center from 2009 to 2019[J]. Perfusion, 2022, 37(3): 235-241.
doi: 10.1177/0267659121993365
|
[4] |
Thongprayoon C, Cheungpasitporn W, Lertjitbanjong P, et al. Incidence and impact of acute kidney injury in patients receiving extracorporeal membrane oxygenation: a meta-analysis[J]. J Clin Med, 2019, 8(7): 981.
doi: 10.3390/jcm8070981
|
[5] |
Fleming GM, Sahay R, Zappitelli M, et al. The incidence of acute kidney injury and its effect on neonatal and pediatric extracorporeal membrane oxygenation outcomes: a multicenter report from the kidney intervention during extracorporeal membrane oxygenation study group[J]. Pediatr Crit Care Med, 2016, 17(12): 1157-1169.
doi: 10.1097/PCC.0000000000000970
|
[6] |
Schmidt M, Bailey M, Kelly J, et al. Impact of fluid balance on outcome of adult patients treated with extracorporeal membrane oxygenation[J]. Intensive Care Med, 2014, 40(9): 1256-1266.
doi: 10.1007/s00134-014-3360-2
|
[7] |
Ootaki C, Yamashita M, Ootaki Y, et al. Reduced pulsatility induces periarteritis in kidney: role of the local renin-angiotensin system[J]. J Thorac Cardiovas Surg, 2008, 136(1): 150-158.
doi: 10.1016/j.jtcvs.2007.12.023
|
[8] |
Villa G, Katz N, Ronco C. Extracorporeal membrane oxygenation and the kidney[J]. Cardiorenal Med, 2015, 6(1): 50-60.
doi: 10.1159/000439444
|
[9] |
Sasser WC, Robert SM, Askenazi DJ, et al. Peritoneal dialysis: an alternative modality of fluid removal in neonates requiring extracorporeal membrane oxygenation after cardiac surgery[J]. J Extra Corpor Technol, 2014, 46(2): 157-161.
|
[10] |
Li G, Zhang L, Sun Y, et al. Co-initiation of continuous renal replacement therapy, peritoneal dialysis, and extracorporeal membrane oxygenation in neonatal life-threatening hyaline membrane disease: a case report[J]. Medicine (Baltimore), 2019, 98(4): e14194.
doi: 10.1097/MD.0000000000014194
|
[11] |
Gorga SM, Lima L, Askenazi DJ, et al. Fluid balance management informs renal replacement therapy use during pediatric extracorporeal membrane oxygenation: a survey report from the kidney intervention during extracorporeal membrane oxygenation group[J]. ASAIO J, 2021, 68(3): 407-412.
|
[12] |
Messmer AS, Zingg C, Müller M, et al. Fluid overload and mortality in adult critical care patients - a systematic review and meta-analysis of observational studies[J]. Crit Care Med, 2020, 48(12): 1862-1870.
doi: 10.1097/CCM.0000000000004617
pmid: 33009098
|
[13] |
Davis AL, Carcillo JA, Aneja RK, et al. The American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: executive summary[J]. Pediatr Crit Care Med, 2017, 18(9): 884-890.
doi: 10.1097/PCC.0000000000001259
|
[14] |
Selewski DT, Askenazi DJ, Bridges BC, et al. The impact of fluid overload on outcomes in children treated with extracorporeal membrane oxygenation: a multicenter retrospective cohort study[J]. Pediatr Crit Care Med, 2017, 18(12): 1126-1135.
doi: 10.1097/PCC.0000000000001349
|
[15] |
Askenazi DJ, Selewski DT, Paden ML, et al. Renal replacement therapy in critically ill patients receiving extracorporeal membrane oxygenation[J]. Clin J Am Soc Nephrol, 2012, 7(8): 1328-1336.
doi: 10.2215/CJN.12731211
|
[16] |
Lee SW, Yu MY, Lee H, et al. Risk Factors for acute kidney injury and in-hospital mortality in patients receiving extracorporeal membrane oxygenation[J]. PLoS One, 2015, 10(10): e0140674.
|
[17] |
STARRT-AKI Investigators, et al. Canadian Critical Care Trials Group, Australian and New Zealand Intensive Care Society Clinical Trials Group,Timing of initiation of renal-replacement therapy in acute kidney injury[J]. N Engl J Med, 2020, 383(3): 240-251.
doi: 10.1056/NEJMoa2000741
|
[18] |
Han SS, Kim HJ, Lee SJ, et al. Effects of renal replacement therapy in patients receiving extracorporeal membrane oxygenation: a meta-analysis[J]. Ann Thorac Surg, 2015, 100(4): 1485-1495.
doi: 10.1016/j.athoracsur.2015.06.018
|
[19] |
Murphy HJ, Eklund MJ, Hill J, et al. Early continuous renal replacement therapy during infant extracorporeal life support is associated with decreased lung opacification[J]. J Artif Organs, 2019, 22(4): 286-293.
doi: 10.1007/s10047-019-01119-1
pmid: 31342287
|
[20] |
Murphy HJ, Cahill JB, Twombley KE, et al. Early continuous renal replacement therapy improves nutrition delivery in neonates during extracorporeal life support[J]. J Ren Nutr, 2018, 28(1): 64-70.
doi: 10.1053/j.jrn.2017.06.008
|
[21] |
Paek JH, Park S, Lee A, et al. Timing for initiation of sequential continuous renal replacement therapy in patients on extracorporeal membrane oxygenation[J]. Kidney Res Clin Pract, 2018, 37(3): 239-247.
doi: 10.23876/j.krcp.2018.37.3.239
|
[22] |
Joannidis M, Forni LG, Klein SJ, et al. Lung-kidney interactions in critically ill patients: consensus report of the Acute Disease Quality Initiative (ADQI) 21 Workgroup[J]. Intensive Care Med, 2020, 46(4): 654-672.
doi: 10.1007/s00134-019-05869-7
pmid: 31820034
|
[23] |
Ostermann M, Connor M Jr, Kashani K. Continuous renal replacement therapy during extracorporeal membrane oxygenation: why, when and how?[J]. Curr Opin Crit Care, 2018, 24(6): 493-503.
doi: 10.1097/MCC.0000000000000559
pmid: 30325343
|
[24] |
Seczyńska B, Królikowski W, Nowak I, et al. Continuous renal replacement therapy during extracorporeal membrane oxygenation in patients treated in medical intensive care unit: technical considerations[J]. Ther Apher Dial, 2014, 18(6): 523-534.
doi: 10.1111/1744-9987.12188
|
[25] |
Jenks CL, Zia A, Venkataraman R, et al. High hemoglobin is an independent risk factor for the development of hemolysis during pediatric extracorporeal life support[J]. J Intensive Care Med, 2019, 34(3): 259-264.
doi: 10.1177/0885066617708992
|
[26] |
Giani M, Scaravilli V, Stefanini F, et al. Continuous renal replacement therapy in venovenous extracorporeal membrane oxygenation: a retrospective study on regional citrate anticoagulation[J]. ASAIO J, 2020, 66(3): 332-338.
doi: 10.1097/MAT.0000000000001003
|
[27] |
Chen H, Yu RG, Yin NN, et al. Combination of extracorporeal membrane oxygenation and continuous renal replacement therapy in critically ill patients: a systematic review[J]. Crit Care, 2014, 18(6): 675.
doi: 10.1186/s13054-014-0675-x
|
[28] |
Meyer RJ, Brophy PD, Bunchman TE, et al. Survival and renal function in pediatric patients following extracorporeal life support with hemofiltration[J]. Pediatr Crit Care Med, 2001, 2(3): 238-242.
doi: 10.1097/00130478-200107000-00009
|
[29] |
Paden ML, Warshaw BL, Heard ML, et al. Recovery of renal function and survival after continuous renal replacement therapy during extracorporeal membrane oxygenation[J]. Pediatr Crit Care Med, 2011, 12(2): 153-158.
doi: 10.1097/PCC.0b013e3181e2a596
|
[30] |
Vinclair C, De Montmollin E, Sonneville R, et al. Factors associated with major adverse kidney events in patients who underwent veno-arterial extracorporeal membrane oxygenation[J]. Ann Intensive Care, 2020, 10(1): 44.
doi: 10.1186/s13613-020-00656-w
pmid: 32307616
|