[1] |
中国出生缺陷防治报告[R]. 中华人民共和国卫生部, 2012.
|
[2] |
Evans MI, Wapner RJ, Berkowitz RL. Noninvasive prenatal screening or advanced diagnostic testing: caveat emptor[J]. Am J Obstet Gynecol, 2016, 215(3): 298-305.
doi: 10.1016/j.ajog.2016.04.029
pmid: 27131582
|
[3] |
Centers for Disease Control and Prevention (CDC). Update on overall prevalence of major birth defects--Atlanta, Georgia, 1978-2005[J]. MMWR Morb Mortal Wkly Rep, 2008, 57(1): 1-5.
|
[4] |
Wald NJ, Rodeck C, Hackshaw AK, et al. First and second trimester antenatal screening for Down's syndrome: the results of the serum, urine and ultrasound screening study (SURUSS)[J]. Health Technol Assess, 2003, 7(11): 1-77.
|
[5] |
Lambert-Messerlian G, Dugoff L, Vidaver J, et al. First- and second-trimester Down syndrome screening markers in pregnancies achieved through assisted reproductive technologies (ART): a FASTER trial study[J]. Prenat Diagn, 2006, 26(8): 672-678.
doi: 10.1002/pd.v26:8
|
[6] |
Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum[J]. Lancet, 1997, 350(9076): 485-487.
doi: 10.1016/S0140-6736(97)02174-0
pmid: 9274585
|
[7] |
Chiu RW, Chan K C, Gao Y, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma[J]. Proc Natl Acad Sci U S A, 2008, 105(51): 20458-20463.
doi: 10.1073/pnas.0810641105
|
[8] |
Song Y, Liu C, Qi H, et al. Noninvasive prenatal testing of fetal aneuploidies by massively parallel sequencing in a prospective Chinese population[J]. Prenat Diagn, 2013, 33(7): 700-706.
doi: 10.1002/pd.v33.7
|
[9] |
Norton ME, Brar H, Weiss J, et al. Non-invasive chromosomal evaluation (NICE) study: results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18[J]. Am J Obstet Gynecol, 2012, 207(2): 137.
|
[10] |
Gregg AR, Skotko BG, Benkendorf JL, et al. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics[J]. Genet Med, 2016, 18(10): 1056-1065.
doi: 10.1038/gim.2016.97
pmid: 27467454
|
[11] |
Rose NC, Barrie ES, Malinowski J, et al. Systematic evidence-based review: The application of noninvasive prenatal screening using cell-free DNA in general-risk pregnancies[J]. Genet Med, 2022, 24(7): 1379-1391.
doi: 10.1016/j.gim.2022.03.019
|
[12] |
Dungan JS, Klugman S, Darilek S, et al. Noninvasive prenatal screening (NIPS) for fetal chromosome abnormalities in a general-risk population: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG)[J]. Genet Med, 2023, 25(2): 100336.
doi: 10.1016/j.gim.2022.11.004
|
[13] |
Liang D, Cram DS, Tan H, et al. Clinical utility of noninvasive prenatal screening for expanded chromosome disease syndromes[J]. Genet Med, 2019, 21: 1998-2006.
doi: 10.1038/s41436-019-0467-4
pmid: 30828085
|
[14] |
Shi P, Wang Y, Liang H, et al. The potential of expanded noninvasive prenatal screening for detection of microdeletion and microduplication syndromes[J]. Prenat Diagn, 2021, 41: 1332-1342.
doi: 10.1002/pd.v41.10
|
[15] |
Wang C, Tang J, Tong K, et al. Expanding the application of non-invasive prenatal testing in the detection of foetal chromosomal copy number variations[J]. BMC Med Genomics, 2021, 14(1): 292.
doi: 10.1186/s12920-021-01131-6
pmid: 34895207
|
[16] |
Wapner RJ, Martin CL, Levy B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis[J]. N Engl J Med, 2012, 367(23): 2175-2184.
doi: 10.1056/NEJMoa1203382
|
[17] |
Srebniak MI, Joosten M, Knapen MFCM, et al. Frequency of submicroscopic chromosomal aberrations in pregnancies without increased risk for structural chromosomal aberrations: systematic review and meta-analysis[J]. Ultrasound Obstet Gynecol, 2018, 51(4): 445-452.
doi: 10.1002/uog.17533
pmid: 28556491
|
[18] |
Wapner RJ, Babiarz JE, Levy B, et al. Expanding the scope of noninvasive prenatal testing: detection of fetal microdeletion syndromes[J]. Am J Obstet Gynecol, 2015, 212(3):332.
|
[19] |
Lefkowitz RB, Tynan JA, Liu T, et al. Clinical validation of a noninvasive prenatal test for genomewide detection of fetal copy number variants[J]. Am J Obstet Gynecol, 2016, 215(2): 227.
|
[20] |
Dar P, Jacobsson B, Clifton R, et al. Cell-free DNA screening for prenatal detection of 22q11.2 deletion syndrome[J]. Am J Obstet Gynecol, 2022, 227(1):79.
|
[21] |
Guseh S, Wilkins-Haug L, Kaimal A, et al. Utility of noninvasive genome-wide screening: a prospective cohort of obstetric patients undergoing diagnostic testing[J]. Genet Med, 2021, 23(7): 1341-1348.
doi: 10.1038/s41436-021-01147-4
pmid: 33782554
|
[22] |
Yu D, Zhang K, Han M, et al. Noninvasive prenatal testing for fetal subchromosomal copy number variations and chromosomal aneuploidy by low-pass whole-genome sequencing[J]. Mol Genet Genomic Med, 2019, 7(6): e674.
|
[23] |
Chitty LS. Advances in the prenatal diagnosis of monogenic disorders[J]. Prenat Diagn, 2018, 38: 3-5.
|
[24] |
Gregg AR, Aarabi M, Klugman S, et al. Screening for autosomal recessive and X-linked conditions during pregnancy and preconception: a practice resource of the American College of Medical Genetics and Genomics (ACMG)[J]. Genet Med, 2021, 23(10): 1793-1806.
doi: 10.1038/s41436-021-01203-z
pmid: 34285390
|
[25] |
Yang Y, Muzny DM, Xia F, et al. Molecular findings among patients referred for clinical whole-exome sequencing[J]. JAMA, 2014, 312(18): 1870-1879.
doi: 10.1001/jama.2014.14601
pmid: 25326635
|
[26] |
Toriello HV, Meck JM. Statement on guidance for genetic counseling in advanced paternal age[J]. Genet Med, 2008, 10(6): 457-460.
doi: 10.1097/GIM.0b013e318176fabb
pmid: 18496227
|
[27] |
Taylor JL, Debost JC, Morton SU, et al. Paternal-age-related de novo mutations and risk for five disorders[J]. Nat Commun, 2019, 10(1): 3043.
doi: 10.1038/s41467-019-11039-6
pmid: 31292440
|
[28] |
Chen X, Jiang Y, Chen R, et al. Clinical efficiency of simultaneous CNV-seq and whole-exome sequencing for testing fetal structural anomalies[J]. J Transl Med, 2022, 20(1):10.
doi: 10.1186/s12967-021-03202-9
pmid: 34980134
|
[29] |
Chitty LS, Mason S, Barrett AN. Non-Invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach[J]. Prenat Diagn, 2015, 35: 656-662.
doi: 10.1002/pd.v35.7
|
[30] |
Zhang J, Li J, Saucier JB. Non-Invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA[J]. Nat Med, 2019, 25(3): 439-441.
doi: 10.1038/s41591-018-0334-x
pmid: 30692697
|
[31] |
Mohan P, Lemoine J, Trotter C, et al. Clinical experience with non-invasive prenatal screening for single-gene disorders[J]. Ultrasound Obstet Gynecol, 2022, 59: 33-39.
doi: 10.1002/uog.v59.1
|
[32] |
Xu C, Li J, Chen S, et al. Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening[J]. Cell Disco, 2022, 8(1): 109.
doi: 10.1038/s41421-022-00457-4
|
[33] |
Zhang J, Wu Y, Chen S, et al. Prospective prenatal cell-free DNA screening for genetic conditions of heterogenous etiologies[J]. Nat Med, 2024, 30(2): 470-479.
doi: 10.1038/s41591-023-02774-x
|