临床儿科杂志 ›› 2022, Vol. 40 ›› Issue (3): 235-240.doi: 10.12372/jcp.2022.21e1244
• 继续医学教育 • 上一篇
收稿日期:
2021-08-30
出版日期:
2022-03-15
发布日期:
2022-03-09
通讯作者:
马鸣
E-mail:maming73@zju.edu.cn
基金资助:
WANG Wenqiao1, MAO Shanshan2, MA Ming1()
Received:
2021-08-30
Online:
2022-03-15
Published:
2022-03-09
Contact:
MA Ming
E-mail:maming73@zju.edu.cn
摘要:
脊髓性肌萎缩症(SMA)是一种严重的神经肌肉疾病,因运动神经元存活基因1(SMN1)缺陷引起。由于肌肉无力、活动量少、消化道症状以及吞咽困难等原因,患儿发生营养不足和营养过剩的概率常明显高于正常儿童,因此SMA的营养管理至关重要。文章就SMA患儿的营养评估、可能出现的营养问题以及相关营养干预策略进行阐述。
王文俏, 毛姗姗, 马鸣. 脊髓性肌萎缩症患儿营养管理研究进展[J]. 临床儿科杂志, 2022, 40(3): 235-240.
WANG Wenqiao, MAO Shanshan, MA Ming. Research progress in nutritional management of children with spinal muscular atrophy[J]. Journal of Clinical Pediatrics, 2022, 40(3): 235-240.
[1] |
Ogino S, Leonard DG, Rennert H, et al. Genetic risk assessment in carrier testing for spinal muscular atrophy[J]. Am J Med Genet, 2002, 110(4): 301-307.
doi: 10.1002/(ISSN)1096-8628 |
[2] |
Pearn J. Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy[J]. J Med Genet, 1978, 15(6): 409-413.
pmid: 745211 |
[3] |
Wei X, Tan H, Yang P, et al. Notable carrier risks for individuals having two copies of SMN1 in spinal muscular atrophy families with 2-copy alleles: estimation based on Chinese meta-analysis data[J]. J Genet Couns, 2017, 26(1): 72-78.
doi: 10.1007/s10897-016-9980-7 |
[4] |
Bharucha-Goebel D, Kaufmann P. Treatment advances in spinal muscular atrophy[J]. Curr Neurol Neurosci Rep, 2017, 17(11): 91.
doi: 10.1007/s11910-017-0798-y |
[5] |
Moore GE, Lindenmayer AW, McConchie GA, et al. Describing nutrition in spinal muscular atrophy: a systematic review[J]. Neuromuscul Disord, 2016, 26(7): 395-404.
doi: 10.1016/j.nmd.2016.05.005 |
[6] | 北京医学会罕见病分会, 北京医学会医学遗传学分会, 北京医学会神经病学分会神经肌肉病学组, 等. 脊髓性肌萎缩症多学科管理专家共识[J]. 中华医学杂志, 2019, 99(19): 1460-1467. |
[7] |
Corkins MR, Griggs KC, Groh-Wargo S, et al. Standards for nutrition support: pediatric hospitalized patients[J]. Nutr Clin Pract, 2013, 28(2): 263-276.
doi: 10.1177/0884533613475822 pmid: 23449773 |
[8] |
McCarthy H, Dixon M, Crabtree I, et al. The development and evaluation of the Screening Tool for the Assessment of Malnutrition in Paediatrics (STAMP©) for use by healthcare staff[J]. J Hum Nutr Diet, 2012, 25(4): 311-318.
doi: 10.1111/j.1365-277X.2012.01234.x pmid: 22568534 |
[9] |
Hulst JM, Zwart H, Hop WC, et al. Dutch national survey to test the STRONGkids nutritional risk screening tool in hospitalized children[J]. Clin Nutr, 2010, 29(1): 106-111.
doi: 10.1016/j.clnu.2009.07.006 |
[10] |
Bertoli S, Foppiani A, De Amicis R, et al. Anthropometric measurement standardization for a multicenter nutrition survey in children with spinal muscular atrophy[J]. Eur J Clin Nutr, 2019, 73(12): 1646-1648.
doi: 10.1038/s41430-019-0392-2 pmid: 30647441 |
[11] | WHO Multicentre Growth Reference Study Group. Reliability of anthropometric measurements in the WHO Multicentre Growth Reference Study[J]. Acta Paediatr Suppl, 2006, 450: 38-46. |
[12] |
Mehta NM, Newman H, Tarrant S, et al. Nutritional status and nutrient intake challenges in children with spinal muscular atrophy[J]. Pediatr Neurol, 2016, 57: 80-83.
doi: 10.1016/j.pediatrneurol.2015.12.015 |
[13] |
Davis RH, Miller EA, Zhang RZ, et al. Responses to fasting and glucose loading in a cohort of well children with spinal muscular atrophy type II[J]. J Pediatr, 2015, 167(6): 1362-1368.e1.
doi: 10.1016/j.jpeds.2015.09.023 |
[14] |
Li YJ, Chen TH, Wu YZ, et al. Metabolic and nutritional issues associated with spinal muscular atrophy[J]. Nutrients, 2020, 12(12): 3842.
doi: 10.3390/nu12123842 |
[15] |
Fosbøl MØ, Zerahn B. Contemporary methods of body composition measurement[J]. Clin Physiol Funct Imaging, 2015, 35(2): 81-97.
doi: 10.1111/cpf.2015.35.issue-2 |
[16] |
Liu J, Yan Y, Xi B, et al. Skeletal muscle reference for Chinese children and adolescents[J]. J Cachexia Sarcopenia Muscle, 2019, 10(1): 155-164.
doi: 10.1002/jcsm.v10.1 |
[17] |
Dong H, Yan Y, Liu J, et al. Reference centiles for evaluating total body fat development and fat distribution by dual-energy x-ray absorptiometry among children and adolescents aged 3-18 years[J]. Clin Nutr, 2021, 40(3): 1289-1295.
doi: 10.1016/j.clnu.2020.08.012 |
[18] |
Martinez EE, Quinn N, Arouchon K, et al. Comprehensive nutritional and metabolic assessment in patients with spinal muscular atrophy: opportunity for an individualized approach[J]. Neuromuscul Disord, 2018, 28(6): 512-519.
doi: 10.1016/j.nmd.2018.03.009 |
[19] |
Baranello G, De Amicis R, Arnoldi MT, et al. Evaluation of body composition as a potential biomarker in spinal muscular atrophy[J]. Muscle Nerve, 2020, 61(4): 530-534.
doi: 10.1002/mus.26823 pmid: 32012296 |
[20] |
Sproule DM, Montes J, Montgomery M, et al. Increased fat mass and high incidence of overweight despite low body mass index in patients with spinal muscular atrophy[J]. Neuromuscul Disord, 2009, 19(6): 391-396.
doi: 10.1016/j.nmd.2009.03.009 |
[21] |
Weber DR, Moore RH, Leonard MB, et al. Fat and lean BMI reference curves in children and adolescents and their utility in identifying excess adiposity compared with BMI and percentage body fat[J]. Am J Clin Nutr, 2013, 98(1): 49-56.
doi: 10.3945/ajcn.112.053611 |
[22] |
Bertoli S, De Amicis R, Mastella C, et al. Spinal muscular atrophy, types I and II: what are the differences in body composition and resting energy expenditure?[J]. Clin Nutr, 2017, 36(6): 1674-1680.
doi: S0261-5614(16)31312-7 pmid: 27890489 |
[23] |
Burrows T, Goldman S, Rollo M. A systematic review of the validity of dietary assessment methods in children when compared with the method of doubly labelled water[J]. Eur J Clin Nutr, 2020, 74(5): 669-681.
doi: 10.1038/s41430-019-0480-3 pmid: 31391548 |
[24] |
Poruk KE, Davis RH, Smart AL, et al. Observational study of caloric and nutrient intake, bone density, and body composition in infants and children with spinal muscular atrophy type I[J]. Neuromuscul Disord, 2012, 22(11): 966-973.
doi: 10.1016/j.nmd.2012.04.008 |
[25] |
Zhou Y, Chen J, Gong X, et al. Nutrition status survey of type 2 and 3 spinal muscular atrophy in Chinese population[J]. Nutr Neurosci, 2021, 23: 1-7.
doi: 10.1080/1028415X.2018.1461459 |
[26] |
Baranello G, Vai S, Broggi F, et al. Evolution of bone mineral density, bone metabolism and fragility fractures in Spinal Muscular Atrophy (SMA) types 2 and 3[J]. Neuromuscul Disord, 2019, 29(7): 525-532.
doi: 10.1016/j.nmd.2019.06.001 |
[27] |
Wasserman HM, Hornung LN, Stenger PJ, et al. Low bone mineral density and fractures are highly prevalent in pediatric patients with spinal muscular atrophy regardless of disease severity[J]. Neuromuscul Disord, 2017, 27(4): 331-337.
doi: 10.1016/j.nmd.2017.01.019 |
[28] |
van Bruggen HW, Wadman RI, Bronkhorst EM, et al. Mandibular dysfunction as a reflection of bulbar involvement in SMA type 2 and 3[J]. Neurology, 2016, 86(6): 552-559.
doi: 10.1212/WNL.0000000000002348 |
[29] |
Messina S, Pane M, De Rose P, et al. Feeding problems and malnutrition in spinal muscular atrophy type II[J]. Neuromuscul Disord, 2008, 18(5): 389-393.
doi: 10.1016/j.nmd.2008.02.008 |
[30] |
Chen YS, Shih HH, Chen TH, et al. Prevalence and risk factors for feeding and swallowing difficulties in spinal muscular atrophy types II and III[J]. J Pediatr, 2012, 160(3): 447-451.
doi: 10.1016/j.jpeds.2011.08.016 |
[31] |
van der Heul AMB, Wijngaarde CA, Wadman RI, et al. Bulbar problems self-reported by children and adults with spinal muscular atrophy[J]. J Neuromuscul Dis, 2019, 6(3): 361-368.
doi: 10.3233/JND-190379 pmid: 31476167 |
[32] |
Choi YA, Suh DI, Chae JH, et al. Trajectory of change in the swallowing status in spinal muscular atrophy type I[J]. Int J Pediatr Otorhinolaryngol, 2020, 130: 109818.
doi: 10.1016/j.ijporl.2019.109818 |
[33] | 中华预防医学会儿童保健分会. 中国儿童钙营养专家共识(2019年版)[J]. 中国妇幼健康研究, 2019, 30(3): 262-269. |
[34] | 罗明, 覃洪金, 黄玉珠, 等. 儿童口腔运动及进食能力评估工具研究进展[J]. 护士进修杂志, 2020, 35(13): 1176-1179. |
[35] |
van den Engel-Hoek L, Erasmus CE, van Bruggen HW, et al. Dysphagia in spinal muscular atrophy type II: more than a bulbar problem?[J]. Neurology, 2009, 73(21): 1787-1791.
doi: 10.1212/WNL.0b013e3181c34aa6 pmid: 19933981 |
[36] |
Mercuri E, Finkel RS, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care[J]. Neuromuscul Disord, 2018, 28(2): 103-115.
doi: 10.1016/j.nmd.2017.11.005 |
[37] |
Davis RH, Godshall BJ, Seffrood E, et al. Nutritional practices at a glance: spinal muscular atrophy type I nutrition survey findings[J]. J Child Neurol, 2014, 29(11): 1467-1472.
doi: 10.1177/0883073813503988 |
[38] |
Wang CH, Finkel RS, Bertini ES, et al. Consensus statement for standard of care in spinal muscular atrophy[J]. J Child Neurol, 2007, 22(8): 1027-1049.
doi: 10.1177/0883073807305788 |
[39] |
Rattanachaiwong S, Singer P. Indirect calorimetry as point of care testing[J]. Clin Nutr, 2019, 38(6): 2531-2544.
doi: S0261-5614(18)32603-7 pmid: 30670292 |
[40] |
Bendavid I, Lobo DN, Barazzoni R, et al. The centenary of the Harris-Benedict equations: how to assess energy requirements best? Recommendations from the ESPEN expert group[J]. Clin Nutr, 2021, 40(3): 690-701.
doi: 10.1016/j.clnu.2020.11.012 pmid: 33279311 |
[41] |
Amano Y. Estimated basal metabolic rate and maintenance fluid volume in children: a proposal for a new equation[J]. Pediatr Int, 2020, 62(5): 522-528.
doi: 10.1111/ped.v62.5 |
[42] |
Bertoli S, De Amicis R, Bedogni G, et al. Predictive energy equations for spinal muscular atrophy type I children[J]. Am J Clin Nutr, 2020, 111(5): 983-996.
doi: 10.1093/ajcn/nqaa009 pmid: 32145012 |
[43] | 中国营养学会. 中国居民膳食营养素参考摄入量(2013版) [M]. 北京: 科学出版社, 2014: 652-660. |
[44] |
Deguise MO, Baranello G, Mastella C, et al. Abnormal fatty acid metabolism is a core component of spinal muscular atrophy[J]. Ann Clin Transl Neurol, 2019, 6(8): 1519-1532.
doi: 10.1002/acn3.v6.8 |
[45] |
Deguise MO, Chehade L, Tierney A, et al. Low fat diets increase survival of a mouse model of spinal muscular atrophy[J]. Ann Clin Transl Neurol, 2019, 6(11): 2340-2346.
doi: 10.1002/acn3.v6.11 |
[46] |
Chou E, Lindeback R, Sampaio H, et al. Nutritional practices in pediatric patients with neuromuscular disorders[J]. Nutr Rev, 2020, 78(10): 857-865.
doi: 10.1093/nutrit/nuz109 |
[47] | 中华预防医学会儿童保健分会. 中国儿童维生素A、维生素D临床应用专家共识[J]. 中国儿童保健杂志, 2021, 29(1): 110-116. |
[48] |
Laheij RJ, Sturkenboom MC, Hassing RJ, et al. Risk of community-acquired pneumonia and use of gastric acid-suppressive drugs[J]. JAMA, 2004, 292(16): 1955-1960.
doi: 10.1001/jama.292.16.1955 |
[49] |
Durkin ET, Schroth MK, Helin M, et al. Early laparoscopic fundoplication and gastrostomy in infants with spinal muscular atrophy type I[J]. J Pediatr Surg, 2008, 43(11): 2031-2037.
doi: 10.1016/j.jpedsurg.2008.05.035 pmid: 18970936 |
[50] |
Singh NN, Hoffman S, Reddi PP, et al. Spinal muscular atrophy: broad disease spectrum and sex-specific phenotypes[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(4): 166063.
doi: 10.1016/j.bbadis.2020.166063 |
[1] | 邹丽萍. 儿童脑病:一类与各种疾病都相关的疾病[J]. 临床儿科杂志, 2023, 41(9): 641-643. |
[2] | 张炜华, 邹丽萍, 任海涛, 关鸿志. 警惕儿童自身免疫性脑炎诊治陷阱[J]. 临床儿科杂志, 2023, 41(9): 644-649. |
[3] | 侯池, 陈文雄, 廖寅婷, 吴文晓, 田杨, 朱海霞, 彭炳蔚, 曾意茹, 吴汶霖, 陈宗宗, 李小晶. 儿童自身免疫性胶质纤维酸性蛋白星形胶质细胞病临床分析[J]. 临床儿科杂志, 2023, 41(9): 656-660. |
[4] | 杨雅婷, 蔡玥昊, 方琼, 陈琅, 陈巧彬, 林志, 吴菲菲, 林萌. 儿童特发性和症状性枕叶癫痫临床分析[J]. 临床儿科杂志, 2023, 41(9): 668-673. |
[5] | 侯若琳, 吴静, 李玲. 头颅MRI以脑膜增厚伴强化表现的儿童自身免疫性脑炎[J]. 临床儿科杂志, 2023, 41(9): 674-679. |
[6] | 武跃芳, 孙艳玲, 武万水, 杜淑旭, 李苗, 孙黎明. G4型髓母细胞瘤患儿预后影响因素及生存状况分析[J]. 临床儿科杂志, 2023, 41(9): 686-691. |
[7] | 孙娟, 李海英, 贾沛生, 王怀立. 儿童暴发性心肌炎12例临床分析[J]. 临床儿科杂志, 2023, 41(9): 692-696. |
[8] | 汪陈慧, 杨辉. 儿童克罗恩病早期筛查和诊断研究进展[J]. 临床儿科杂志, 2023, 41(9): 708-714. |
[9] | 沈楠, 杜白露. 血液肿瘤患儿侵袭性真菌感染诊治和管理策略[J]. 临床儿科杂志, 2023, 41(8): 571-577. |
[10] | 徐贝雪, 刘泉波. 儿童侵袭性肺部真菌感染195例临床分析[J]. 临床儿科杂志, 2023, 41(8): 584-588. |
[11] | 陈虹宇, 刘梓豪, 王和平, 廖翠娟, 李莉, 王文建, 赖建威. 不可分型流感嗜血杆菌生物膜在儿童慢性肺部感染中的作用[J]. 临床儿科杂志, 2023, 41(8): 589-593. |
[12] | 康磊, 郭芳, 李立方, 白新凤, 程彩云, 徐梅先. 宏基因组二代测序在儿童内脏利什曼病相关噬血淋巴组织细胞增生症中的应用价值[J]. 临床儿科杂志, 2023, 41(8): 594-598. |
[13] | 邬晓玲, 吕铁伟. 儿童特发性左室室性心动过速临床分析[J]. 临床儿科杂志, 2023, 41(8): 599-603. |
[14] | 孙智才, 刘玉玲, 李小琳, 潘晓芬. 儿童原发性肾病综合征合并肾上腺危象15例临床分析[J]. 临床儿科杂志, 2023, 41(8): 610-612. |
[15] | 王红霞, 潘翔, 逯军. DHTKD1基因复合杂合变异致α-酮己二酸尿症1例报告[J]. 临床儿科杂志, 2023, 41(8): 624-628. |
|