[1] |
Fan Y, Li X, Zhang L, et al. SARS-CoV-2 Omicron variant: recent progress and future perspectives[J]. Signal Transduct Target Ther, 2022, 7(1): 141.
|
[2] |
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center For Disease Control And Prevention[J]. JAMA, 2022, 323(13): 1239-1242.
doi: 10.1001/jama.2020.2648
|
[3] |
American Academy of Pediatrics. Children and COVID-19: state-level data report[EB/OL]. [2022-2-10]. http://www.aap.org/en/pages/2019-novel-coronavirus-COVID-19-infections/children-and-COVID-19-state-level-data-report/.
|
[4] |
Clarke KEN, Kim Y, Jones J. Pediatric infection-induced SARS-CoV-2 seroprevalence estimation using commercial laboratory specimens: how representative is it of the general U.S. Pediatric population?[J/OL]. SSRN, 2022 April 26.
|
[5] |
Jackson CB, Farzan M, Chen B, et al. Mechanisms of SARS-CoV-2 entry into cells[J]. Nat Rev Mol Cell Biol, 2022, 23(1): 3-20.
|
[6] |
Yin W, Xu Y, Xu P, et al. Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody[J]. Science, 2022, 375(6584): 1048-1053.
doi: 10.1126/science.abn8863
pmid: 35133176
|
[7] |
Cameroni E, Bowen JE, Rosen LE, et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift[J]. Nature, 2022, 602(7898): 664-670.
doi: 10.1038/s41586-021-04386-2
|
[8] |
Tian F, Tong B, Sun L, et al. N501y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2[J]. Elife, 2021, 10: e69091.
doi: 10.7554/eLife.69091
|
[9] |
Laffeber C, de Koning K, Kanaar R, et al. Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants[J]. J Mol Biol, 2021, 433(15): 167058.
|
[10] |
Ye G, Liu B, Li F. Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain[J]. Nat Commun, 2022, 13(1): 1214.
|
[11] |
CDC. Clinical considerations for care of children and adults with confirmed COVID-19[EB/OL]. (2022-05-27)[2022-6-1]. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/clinical-considerations-presentation.html.
|
[12] |
Burki TK. Omicron variant and booster COVID-19 vaccines[J]. Lancet Respir Med, 2022, 10(2): e17.
|
[13] |
Liu Y, Rocklöv J. The effective reproductive number of the Omicron variant of SARS-CoV-2 is several times relative to Delta[J]. J Travel Med, 2022, 29(3): taac037.
|
[14] |
Xu Y, Wu C, Cao X, et al. Structural and biochemical mechanism for increased infectivity and immune evasion of Omicron BA.2 variant compared to BA.1 and their possible mouse origins[J]. Cell Res, 2022, 32(7): 609-620.
|
[15] |
Mefsin YM, Chen D, Bond HS, et al. Epidemiology of infections with SARS-CoV-2 Omicron BA.2 variant in Hong Kong, January-March 2022[J/OL]. Medrxiv, 2022 April 7. [preprint]. doi: 10.1101/2022.04.07.
doi: 10.1101/2022.04.07
|
[16] |
Yamasoba D, Kimura I, Nasser H, et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike[J]. Cell, 2022, 185(12): 2103-2115.
doi: 10.1016/j.cell.2022.04.035
pmid: 35568035
|
[17] |
Jørgensen SB, Nygård K, Kacelnik O, et al. Secondary attack rates for Omicron and Delta variants of SARS-CoV-2 in Norwegian households[J]. JAMA, 2022, 327(16): 1610-1611.
doi: 10.1001/jama.2022.3780
pmid: 35254379
|
[18] |
Meng B, Abdullahi A, Ferreira IATM, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity[J]. Nature, 2022, 603(7902): 706-714.
doi: 10.1038/s41586-022-04474-x
|
[19] |
Hui K, Ho JCW, Cheung MC, et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo[J]. Nature, 2022, 603(7902): 715-720.
doi: 10.1038/s41586-022-04479-6
|
[20] |
McMahan K, Giffin V, Tostanoski LH, et al. Reduced pathogenicity of the SARS-CoV-2 Omicron variant in hamsters[J]. Med (N Y), 2022, 3(4): 262-268.
|
[21] |
Piersiala K, Kakabas L, Bruckova A, et al. Acute odynophagia: a new symptom of COVID-19 during the SARS-CoV-2 Omicron variant wave in Sweden[J]. J Intern Med, 2022, 292(1): 154-161.
doi: 10.1111/joim.13470
|
[22] |
Menni C, Valdes AM, Polidori L, et al. Symptom prevalence, duration, and risk of hospital admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant dominance: a prospective observational study from the ZOE COVID Study[J]. Lancet, 2022, 399(10335): 1618-1624.
doi: 10.1016/S0140-6736(22)00327-0
pmid: 35397851
|
[23] |
Tunҫ EM, Koid Jia Shin C, Usoro E, et al. Croup during the coronavirus disease 2019 Omicron variant surge[J]. J Pediatr, 2022, 247: 147-149.
doi: 10.1016/j.jpeds.2022.05.006
|
[24] |
Brewster RC, Parsons C, Laird-Gion J, et al. COVID-19-associated croup in children[J]. Pediatrics, 2022, 149(6): e2022056492.
|
[25] |
Buchrieser J, Dufloo J, Hubert M, et al. Syncytia formation by SARS-CoV-2-infected cells[J]. EMBO J, 2020, 39(23): e106267.
|
[26] |
Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study[J]. Lancet, 2022, 399(10323): 437-446.
doi: 10.1016/S0140-6736(22)00017-4
pmid: 35065011
|
[27] |
Wang L, Berger NA, Kaelber DC, et al. Incidence rates and clinical outcomes of SARS-CoV-2 infection with the Omicron and Delta variants in children younger than 5 years in the us[J]. JAMA Pediatr, 2022, 176(8): 811-813.
doi: 10.1001/jamapediatrics.2022.0945
|
[28] |
Zhang Z, Zheng Y, Niu Z, et al. SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination[J]. Cell Death Differ, 2021, 28(9): 2765-2777.
doi: 10.1038/s41418-021-00782-3
|
[29] |
Wang X, Chang H, Tian H, et al. Epidemiological and clinical features of SARS-CoV-2 infection in children during the outbreak of Omicron variant in Shanghai, March 7-March 31, 2022[J/OL]. Influenza Other Respir Viruses, 2022. doi: 10.1111/irv.13044.
doi: 10.1111/irv.13044
|
[30] |
Loske J, Röhmel J, Lukassen S, et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children[J]. Nat Biotechnol, 2022, 40(3): 319-324.
doi: 10.1038/s41587-021-01037-9
|
[31] |
Yin X, Riva L, Pu Y, et al. MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells[J]. Cell Rep, 2021, 34(2): 108628.
|
[32] |
Weisberg SP, Connors TJ, Zhu Y, et al. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum[J]. Nat Immunol, 2021, 22(1): 25-31.
doi: 10.1038/s41590-020-00826-9
pmid: 33154590
|
[33] |
Thongsing A, Eizadkhah D, Fields C, et al. Provoked seizures and status epilepticus in a pediatric population with COVID-19 disease[J]. Epilepsia, 2022, 63(8): e86-e91.
|
[34] |
Bova SM, Serafini L, Serati I, et al. Seizures may be an early sign of acute COVID-19 and the Omicron variant could present a more epileptogenic profile[J]. Acta Paediatr, 2022, 111(9): 1814-1815.
doi: 10.1111/apa.16424
|
[35] |
Cloete J, Kruger A, Masha M, et al. Paediatric hos-pitalisations due to COVID-19 during the first SARS-CoV-2 omicron (b.1.1.529) variant wave in South Africa: a multicentre observational study[J]. Lancet Child Adolesc Health, 2022, 6(5): 294-302.
doi: 10.1016/S2352-4642(22)00027-X
|
[36] |
Lin JE, Asfour A, Sewell TB, et al. Neurological issues in children with COVID-19[J]. Neurosci Lett, 2021, 743: 135567.
doi: 10.1016/j.neulet.2020.135567
|
[37] |
Choi JH, Choi SH, Yun KW. Risk factors for severe COVID-19 in children: a systematic review and meta-analysis[J]. J Korean Med Sci, 2022, 37(5): e35.
|
[38] |
Sacco K, Castagnoli R, Vakkilainen S, et al. Immuno-pathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19[J]. Nat Med, 2022, 28(5): 1050-1062.
doi: 10.1038/s41591-022-01724-3
|
[39] |
Sharma C, Ganigara M, Galeotti C, et al. Multisystem inflammatory syndrome in children and Kawasaki disease: a critical comparison[J]. Nat Rev Rheumatol, 2021, 17(12): 731-748.
doi: 10.1038/s41584-021-00709-9
pmid: 34716418
|
[40] |
Levy N, Koppel JH, Kaplan O, et al. Severity and incidence of multisystem inflammatory syndrome in children during 3 SARS-CoV-2 pandemic waves in Israel[J]. JAMA, 2022, 327(24): 2452-2454.
doi: 10.1001/jama.2022.8025
pmid: 35588048
|
[41] |
McCallum M, Czudnochowski N, Rosen LE, et al. Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement[J]. Science, 2022, 375(6583): 864-868.
doi: 10.1126/science.abn8652
pmid: 35076256
|
[42] |
Jara A, Undurraga EA, Zubizarreta JR, et al. Effectiveness of CoronaVac in children 3 to 5 years during the SARS-CoV-2 Omicron outbreak in Chile[J]. Nat Med, 2022, 28(7): 1377-1380.
doi: 10.1038/s41591-022-01874-4
|
[43] |
Naranbhai V, Nathan A, Kaseke C, et al. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals[J]. Cell, 2022, 185(7): 1259.
|
[44] |
Chemaitelly H, Ayoub HH, Almukdad S, et al. Duration of mRNA vaccine protection against SARS-CoV-2 Omicron BA.1 and BA.2 subvariants in Qatar[J]. Nat Commun, 2022, 13(1): 3082.
|