[1] |
Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis[J]. Lancet Infect Dis, 2018, 18(3): 318-327.
doi: S1473-3099(17)30753-3
pmid: 29276051
|
[2] |
Fu P, Xu H, Jing C, et al. Bacterial epidemiology and antimicrobial resistance profiles in children reported by the ISPED program in China, 2016 to 2020[J]. Microbiol Spectr, 2021, 9(3): e0028321.
|
[3] |
Logan LK, Gandra S, Mandal S, et al. Multidrug- and carbapenem-resistant Pseudomonas aeruginosa in children, United States, 1999-2012[J]. J Pediatr Infect Dis Soc, 2017, 6(4): 352-359.
|
[4] |
Seifert H, von Linstow Ml, Janssen H, et al. Antimicrobial susceptibility among Gram-negative isolates in pediatric patients in Europe from 2013-2018 compared to 2004-2012: results from the ATLAS surveillance study[J]. Int J Antimicrob Agents, 2021, 58(5): 106441.
doi: 10.1016/j.ijantimicag.2021.106441
|
[5] |
Blair JM, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance[J]. Nat Rev Microbiol, 2015, 13(1): 42-51.
doi: 10.1038/nrmicro3380
pmid: 25435309
|
[6] |
Hancock RE, Brinkman FS. Function of Pseudomonas porins in uptake and efflux[J]. Annu Rev Microbiol, 2002, 56: 17-38.
pmid: 12142471
|
[7] |
Feng W, Huang Q, Wang Y, et al. Changes in the resistance and epidemiological characteristics of Pseudomonas aeruginosa during a ten-year period[J]. J Microbiol Immunol Infect, 2021, 54(2): 261-266.
doi: 10.1016/j.jmii.2019.08.017
|
[8] |
Daury L, Orange F, Taveau JC, et al. Tripartite assembly of RND multidrug efflux pumps[J]. Nat Commun, 2016, 7: 10731.
doi: 10.1038/ncomms10731
pmid: 26867482
|
[9] |
Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa[J]. Front Microbiol, 2015, 6: 660.
doi: 10.3389/fmicb.2015.00660
pmid: 26217310
|
[10] |
Hassuna NA, Darwish MK, Sayed M, et al. Molecular epidemiology and mechanisms of high-level resistance to meropenem and imipenem in Pseudomonas aeruginosa[J]. Infect Drug Resist, 2020, 13: 285-293.
doi: 10.2147/IDR.S233808
pmid: 32099420
|
[11] |
Bonnin RA, Bogaerts P, Girlich D, et al. Molecular characterization of OXA-198 carbapenemase-producing Pseudomonas aeruginosa clinical isolates[J]. Antimicrob Agents Chemother, 2018, 62(6): e02496-17.
|
[12] |
Reyes J, Komarow L, Chen L, et al. Global epidemiology and clinical outcomes of carbapenem-resistant Pseu-domonas aeruginosa and associated carbapenemases (POP): a prospective cohort study[J]. Lancet Microbe, 2023, 4(3): e159-e170.
|
[13] |
Schauer J, Gatermann SG, Hoffmann D, et al. GPC-1, a novel class A carbapenemase detected in a clinical Pseudomonas aeruginosa isolate[J]. J Antimicrob Chemother, 2020, 75(4): 911-916.
doi: 10.1093/jac/dkz536
|
[14] |
Yin S, Chen P, You B, et al. Molecular typing and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a Chinese burn center from 2011 to 2016[J]. Front Microbiol, 2018, 9: 1135.
doi: 10.3389/fmicb.2018.01135
|
[15] |
Breidenstein EB, de la Fuente- Núñez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance[J]. Trends Microbiol, 2011, 19(8): 419-426.
doi: 10.1016/j.tim.2011.04.005
pmid: 21664819
|
[16] |
Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa - mechanisms, epidemiology and evolution[J]. Drug Resist Updat, 2019, 44: 100640.
doi: 10.1016/j.drup.2019.07.002
|
[17] |
Botelho J, Grosso F, Peixe L. Characterization of the pJB12 plasmid from Pseudomonas aeruginosa reveals Tn 6352, a novel putative transposon associated with mobilization of the blaVIM-2-harboring In58 integron[J]. Antimicrob Agents Chemother, 2017, 61(5): e02532-16.
|
[18] |
van der Zee A, Kraak WB, Burggraaf A, et al. Spread of carbapenem resistance by transposition and conjugation among Pseudomonas aeruginosa[J]. Front Microbiol, 2018, 9: 2057.
doi: 10.3389/fmicb.2018.02057
|
[19] |
Xiong J, Alexander DC, Ma JH, et al. Complete sequence of pOZ176, a 500-kilobase IncP-2 plasmid encoding IMP-9-mediated carbapenem resistance, from outbreak isolate Pseudomonas aeruginosa 96[J]. Antimicrob Agents Chemother, 2013, 57(8): 3775-3782.
doi: 10.1128/AAC.00423-13
|
[20] |
López-Causapé C, Cabot G, Del Barrio-Tofiño E, et al. The versatile mutational resistome of Pseudomonas aeruginosa[J]. Front Microbiol, 2018, 9: 685.
doi: 10.3389/fmicb.2018.00685
pmid: 29681898
|
[21] |
Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms[J]. Int J Med Microbiol, 2002, 292(2): 107-113.
doi: 10.1078/1438-4221-00196
pmid: 12195733
|
[22] |
Pang Z, Raudonis R, Glick BR, et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies[J]. Biotechnol Adv, 2019, 37(1): 177-192.
doi: 10.1016/j.biotechadv.2018.11.013
|
[23] |
Rasamiravaka T, Labtani Q, Duez P, et al. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms[J]. Biomed Res Int, 2015: 759348.
|
[24] |
Chambonnier G, Roux L, Redelberger D, et al. The hybrid histidine kinase lads forms a multicomponent signal transduction system with the GacS/GacA two-component system in Pseudomonas aeruginosa[J]. PLoS Genet, 2016, 12(5): e1006032.
|
[25] |
Bordi C, Lamy MC, Ventre I, et al. Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis[J]. Mol Microbiol, 2010, 76(6): 1427-1443.
doi: 10.1111/j.1365-2958.2010.07146.x
|
[26] |
Valentini M, Filloux A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria[J]. J Biol Chem, 2016, 291(24): 12547-12555.
doi: 10.1074/jbc.R115.711507
pmid: 27129226
|
[27] |
Tamma PD, Aitken SL, Bonomo RA, et al. Infectious Diseases Society of America 2022 guidance on the treatment of extended-spectrum beta-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa)[J]. Clin Infect Dis, 2022, 75(2): 187-212.
doi: 10.1093/cid/ciac268
|
[28] |
中华医学会呼吸病学分会感染学组. 中国铜绿假单胞菌下呼吸道感染诊治专家共识(2022年版)[J]. 中华结核和呼吸杂志, 2022, 45(8): 739-752.
|
[29] |
Paul M, Carrara E, Retamar P, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine)[J]. Clin Microbiol Infect, 2022, 28(4): 521-547.
doi: 10.1016/j.cmi.2021.11.025
|
[30] |
Davido B, Fellous L, Lawrence C, et al. Ceftazidime-avibactam and aztreonam, an interesting strategy to overcome beta-lactam resistance conferred by metallo-beta-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2017, 61(9): e01008-17.
|
[31] |
王明贵. 广泛耐药革兰阴性菌感染的实验诊断、抗菌治疗及医院感染控制: 中国专家共识[J]. 中国感染与化疗杂志, 2017, 17(1): 82-93.
|