临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (10): 646-653.doi: 10.12372/jcp.2023.23e0634
李芳, 王利
收稿日期:
2023-07-11
出版日期:
2023-10-15
发布日期:
2023-10-08
作者简介:
李芳,儿科学博士,主任医师,重庆医科大学硕士研究生导师,重庆市中青年医学高端人才。现任重庆市妇幼保健院(重庆医科大学附属妇女儿童医院)副院长。兼任中国医师协会新生儿科医师分会生命支持专委会副主任委员、中华医学会围产医学专委会产房安全与助产学组委员、重庆医学会围产医学分会副主任委员等学术任职。先后在丹麦哥本哈根大学和美国奥古斯塔大学儿童医学中心担任访问学者。主持国家自然科学基金、省部级重点课题等6项,十四五科技部重大专项骨干成员,以第一作者或通信作者在Lancet Network Open、Advanced Science等权威杂志上发表SCI论文10余篇,执笔制定指南/专家共识5篇,获得重庆市科技进步二等奖1项,中国妇幼健康科学技术三等奖1项,参编专著3部。担任BMC Pediatrics、《临床儿科杂志》青年编委,《中南大学学报(医学版)》《检验医学与临床》等杂志审稿专家。ORCID:0000-0001-9038-4877
基金资助:
LI Fang, WANG Li
Received:
2023-07-11
Online:
2023-10-15
Published:
2023-10-08
摘要:
尽管新生儿疾病治疗技术取得了巨大进步,早产儿疾病如支气管肺发育不良、围生期脑损伤和坏死性小肠结肠炎等疾病仍是我国新生儿死亡的重要原因,也严重影响存活早产儿远期生存质量。探寻更有效的防治手段,是新生儿领域关注的焦点。过去20年来,干细胞治疗特别是脐血来源的干细胞作为多种早产疾病的新型治疗策略,取得了鼓舞人心的临床前研究和临床研究结果,现就脐血来源干细胞治疗在早产儿疾病治疗中的临床研究与应用进展作一介绍,分别就脐血来源干细胞治疗的研究现状、存在问题及挑战进行探讨。
李芳, 王利. 脐血来源干细胞治疗早产儿疾病临床研究进展与挑战[J]. 临床儿科杂志, 2023, 41(10): 646-653.
LI Fang, WANG Li. Progress and challenges in clinical research of umbilical cord blood transplantation for the treatment of premature infant diseases[J]. Journal of Clinical Pediatrics, 2023, 41(10): 646-653.
表1
UCBT在新生儿疾病的临床研究"
疾病 | 研究阶段 | 移植途径及时机 | 干细胞类型/来源 | 结论 | 参考文献 |
---|---|---|---|---|---|
BPD | I期 | 气管内、生后7~14 d | 同种异体hUCB-MSCs、单次、低剂量(1×107/kg)或高剂量(2×107/kg) | 近期(移植后84 d)、远期(校正GA 2岁)安全 | Chang等[ |
I期 | 气管内、生后5~14 d | 同种异体hUCB-MSCs、单次、低剂量(1×107/kg)或高剂量(2×107/kg) | 移植后84 d内无移植相关不良事件 | Powell等[ | |
I期 | 静脉、诊断BPD后 | 同种异体hUCB-MSCs、单次、6例低剂量组(1×106/kg)、7例高剂量组(5×106/kg) | 移植后28 d内无移植相关不良事件 | Xia等[ | |
I期 | 静脉、诊断BPD后 | 同种异体hUCB-MSCs、2剂(每剂1×106/kg) | 移植后1年无移植相关不良事件 | Nguyen等[ | |
II期 | 气管内、生后(11.8± 2.0)d | 同种异体hUCB-MSCs、单次1×107/kg | 干细胞组炎症因子水平较低、死亡/中重度BPD无显著差异;亚组分析23~24周组重度BPD较低 | Ahn等[ | |
II期 | 静脉、生后8 h内 | 自体脐带血单个核细胞、单次5×107 /kg | 干细胞组机械通气和需氧治疗时间显著减少 | Ren等[ | |
II期 | 静脉、生后24 h内 | 自体脐带血单个核细胞、单次5×107 /kg | 干细胞组存活者的中重度BPD发病率显著降低、呼吸机拔管率更高、校正18~24月龄发育迟缓更低 | Zhu xiao等[ | |
IVH | I期 | 脑室内、诊断重度IVH后7 d内 | 同种异体hUCB-MSCs、单次、低剂量(5×106/kg)或高剂量(2×107/kg) | 近期结果:安全可行;计划随访至2岁 | Ahn等[ |
HIE | I期 | 静脉、生后最初72(48)h内最多输注4次 | (1~5)×107 /kg自体脐带血 | 住院结局相似、干细胞移植组1岁Bayley III评分更好 | Cotton等[ |
I期 | 静脉、生后12~72 h内共接受3次 | 自体脐带血 | 随访至18月龄安全可行 | Tsuji等[ | |
NEC | 个案报道 | 静脉、NEC术后 | 同种异体hUCB-MSCs 1×107/kg | 1岁的体格和神经发育和同龄儿童相当 | Akduman等[ |
早产儿贫血 | I期 | 静脉 | 5例、自体脐带血移植 | 安全可行 | Rudnicki等[ |
I期 | 静脉 | 5例、自体脐带血移植 | 安全可行 | Kotowski等[ | |
左心发育不良综合征 | I期 | 心肌内注射、接受II期手术时 | 自体脐带血单个核细胞 (1~3)×106 | 随访6个月:安全可行 | Burkhar等[ |
[1] |
Sun B, Shao X, Cao Y, et al. Neonatal-perinatal medicine in a transitional period in China[J]. Arch Dis Child Fetal Neonatal Ed, 2013, 98(5): F440-F444.
doi: 10.1136/archdischild-2012-302524 |
[2] |
He C, Liu L, Chu Y, et al. National and subnational all-cause and cause-specific child mortality in China, 1996-2015: a systematic analysis with implications for the Sustainable Development Goals[J]. Lancet Glob Health, 2017, 5(2): e186-e197.
doi: 10.1016/S2214-109X(16)30334-5 pmid: 28007477 |
[3] |
Schmidt B, Asztalos EV, Roberts RS, et al. Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms[J]. JAMA-J Am Med Assoc, 2003, 289(9): 1124-1129.
doi: 10.1001/jama.289.9.1124 pmid: 12622582 |
[4] |
Baker EK, Jacobs SE, Lim R, et al. Cell therapy for the preterm infant: promise and practicalities[J]. Arch Dis Child Fetal Neonatal Ed, 2020, 105(5): 563-568.
doi: 10.1136/archdischild-2019-317896 |
[5] |
Sanchez-Petitto G, Rezvani K, Daher M, et al. Umbilical cord blood transplantation: connecting its origin to its future[J]. Stem Cells Transl Med, 2023, 12(2): 55-71.
doi: 10.1093/stcltm/szac086 |
[6] |
Broxmeyer HE, Lee M, Hangoc G, et al. Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood[J]. Blood, 2011, 117(18): 4773-4777.
doi: 10.1182/blood-2011-01-330514 pmid: 21393480 |
[7] |
Mcdonald CA, Fahey MC, Jenkin G, et al. Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options[J]. Pediatr Res, 2018, 83(1-2): 333-344.
doi: 10.1038/pr.2017.236 pmid: 28937975 |
[8] | Castillo-Melendez M, Yawno T, Jenkin G, et al. Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells[J]. Front Neurosci, 2013, 7: 194. |
[9] |
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
doi: 10.1080/14653240600855905 pmid: 16923606 |
[10] |
Bernardo ME, Pagliara D, Locatelli F. Mesenchymal stromal cell therapy: a revolution in regenerative medicine?[J]. Bone Marrow Transplant, 2012, 47(2): 164-171.
doi: 10.1038/bmt.2011.81 |
[11] |
Zhang X, Hirai M, Cantero S, et al. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue[J]. J Cell Biochem, 2011, 112(4):1206-1218.
doi: 10.1002/jcb.23042 pmid: 21312238 |
[12] |
Brown JA, Boussiotis VA. Umbilical cord blood transplantation: Basic biology and clinical challenges to immune reconstitution[J]. Clin Immunol, 2008, 127(3): 286-297.
doi: 10.1016/j.clim.2008.02.008 pmid: 18395491 |
[13] |
Carrelha J, Meng Y, Kettyle LM, et al. Hierarchically related lineage-restricted fates of multipotent haema-topoietic stem cells[J]. Nature, 2018, 554(7690): 106-111.
doi: 10.1038/nature25455 |
[14] |
Li J, Ma Y, Miao X, et al. Neovascularization and tissue regeneration by endothelial progenitor cells in ischemic stroke[J]. Neurol Sci, 2021, 42(9): 3585-3593.
doi: 10.1007/s10072-021-05428-3 pmid: 34216308 |
[15] |
Chirumbolo S, Ortolani R, Veneri D, et al. Lymphocyte phenotypic subsets in umbilical cord blood compared to peripheral blood from related mothers[J]. Cytometry B Clin Cytom, 2011, 80B(4): 248-253.
doi: 10.1002/cyto.b.v80b.4 |
[16] | Saha A, Buntz S, Scotland P, et al. A cord blood monocyte-derived cell therapy product accelerates brain remyelination[J]. JCI Insight, 2016, 1(13): e86667. |
[17] |
Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions[J]. Nat Rev Immunol, 2017, 17(6): 349-362.
doi: 10.1038/nri.2017.28 pmid: 28436425 |
[18] |
Sullivan MJ. Banking on cord blood stem cells[J]. Nat Rev Cancer, 2008, 8(7): 555-563.
doi: 10.1038/nrc2418 pmid: 18548085 |
[19] |
Batsali AK, Kastrinaki M, Papadaki HA, et al. Mesenchymal stem cells derived from Wharton's Jelly of the umbilical cord: biological properties and emerging clinical applications[J]. Curr Stem Cell Res Ther, 2013, 8(2): 144-145.
doi: 10.2174/1574888X11308020005 |
[20] | Malhotra A, Thebaud B, Paton MCB, et al. Advances in neonatal cell therapies: Proceedings of the First Neonatal Cell Therapies Symposium (2022)[J]. Pediatr Res, 2023. doi: 10.1038/s41390-023-02707-x. |
[21] |
Willis GR, Reis M, Gheinani AH, et al. Extracellular vesicles protect the neonatal lung from hyperoxic injury through the epigenetic and transcriptomic reprogramming of myeloid cells[J]. Am J Respir Crit Care Med, 2021, 204(12): 1418-1432.
doi: 10.1164/rccm.202102-0329OC |
[22] | van Haaften T, Byrne R, Bonnet S, et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats[J]. A Am J Respir Crit Care Med, 2009, 180(11): 1131-1142. |
[23] |
Rubinstein P, Dobrila L, Rosenfield RE, et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution[J]. Proc Natl Acad Sci U S A, 1995, 92: 10119-10122.
doi: 10.1073/pnas.92.22.10119 |
[24] |
Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis[J]. Lancet Respir Med, 2014, 2(12): 1016-1026.
doi: 10.1016/S2213-2600(14)70217-6 pmid: 25465643 |
[25] |
Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hema-topoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling[J]. N Engl J Med, 1989, 321(17): 1174-1178.
doi: 10.1056/NEJM198910263211707 |
[26] |
Kotowski M, Safranow K, Kawa MP, et al. Circulating hematopoietic stem cell count is a valuable predictor of prematurity complications in preterm newborns[J]. BMC Pediatrics, 2012, 12: 148.
doi: 10.1186/1471-2431-12-148 pmid: 22985188 |
[27] | Borghesi A, Massa M, Campanelli R, et al. Circulating endothelial progenitor cells in preterm infants with bronchopulmonary dysplasia[J]. A Am J Respir Crit Care Med, 2009, 180(6): 540-546. |
[28] |
Rudnicki J, Kawa MP, Kotowski M. Clinical evaluation of the safety and feasibility of whole autologous cord blood transplant as a source of stem and progenitor cells for extremely premature neonates: preliminary report[J]. Exp Clin Transplant, 2015, 13(6): 563-572.
pmid: 26643677 |
[29] |
Chang YS, Ahn SY, Yoo HS, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial[J]. J Pediatr, 2014, 164(5): 966-972.
doi: 10.1016/j.jpeds.2013.12.011 |
[30] |
Powell SB, Silvestri JM. Safety of intratracheal administration of human umbilical cord blood derived mesenchymal stromal cells in extremely low birth weight preterm infants[J]. J Pediatr, 2019, 210: 209-213.
doi: 10.1016/j.jpeds.2019.02.029 |
[31] |
Xia Y, Lang T, Niu Y, et al. Phase I trial of human umbilical cord-derived mesenchymal stem cells for treatment of severe bronchopulmonary dysplasia[J]. Genes Dis, 2023, 10(2): 521-530.
doi: 10.1016/j.gendis.2022.02.001 pmid: 37223507 |
[32] |
Nguyen LT, Trieu TTH, Bui HTH, et al. Allogeneic administration of human umbilical cord-derived mesen-chymal stem/stromal cells for bronchopulmonary dysplasia: preliminary outcomes in four Vietnamese infants[J]. J Transl Med, 2020, 18(1): 398.
doi: 10.1186/s12967-020-02568-6 pmid: 33081796 |
[33] |
Ahn SY, Chang YS, Lee MH, et al. Stem cells for bronchopulmonary dysplasia in preterm infants: a randomized controlled phase II trial[J]. Stem Cells Transl Med, 2021, 10(8): 1129-1137.
doi: 10.1002/sctm.20-0330 |
[34] |
Ren Z, Xu F, Zhang X, et al. Autologous cord blood cell infusion in preterm neonates safely reduces respiratory support duration and potentially preterm complications[J]. Stem Cells Transl Med, 2020, 9(2): 169-176.
doi: 10.1002/sctm.19-0106 |
[35] |
Zhuxiao R, Fang X, Wei W, et al. Prevention for moderate or severe BPD with intravenous infusion of autologous cord blood mononuclear cells in very preterm infants-a prospective non-randomized placebo-controlled trial and two-year follow up outcomes[J]. EClinicalMedicine, 2023, 57: 101844.
doi: 10.1016/j.eclinm.2023.101844 |
[36] |
Inder TE, Warfield SK, Wang H, et al. Abnormal cerebral structure is present at term in premature infants[J]. Pediatrics, 2005, 115(2): 286-294.
doi: 10.1542/peds.2004-0326 pmid: 15687434 |
[37] |
Sabir H, Bonifacio SL, Gunn AJ, et al. Unanswered questions regarding therapeutic hypothermia for neonates with neonatal encephalopathy[J]. Semin Fetal Neonatal Med, 2021, 26(5): 101257.
doi: 10.1016/j.siny.2021.101257 |
[38] |
Ahn SY, Chang YS, Sung SI, et al. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase I dose-escalation clinical trial[J]. Stem Cells Transl Med, 2018, 7(12): 847-856.
doi: 10.1002/sctm.17-0219 |
[39] |
Cotten CM, Murtha AP, Goldberg RN, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy[J]. J Pediatr, 2014, 164(5): 973-979.
doi: 10.1016/j.jpeds.2013.11.036 |
[40] |
Tsuji M, Sawada M, Watabe S, et al. Autologous cord blood cell therapy for neonatal hypoxic-ischaemic encephalopathy: a pilot study for feasibility and safety[J]. Sci Rep, 2020, 10(1): 4603.
doi: 10.1038/s41598-020-61311-9 pmid: 32165664 |
[41] | Malhotra A, Novak I, Miller SL, et al. Autologous transplantation of umbilical cord blood-derived cells in extreme preterm infants: protocol for a safety and feasibility study[J]. BMJ Open, 2020, 10(5): e36065. |
[42] |
Akduman H, Dilli D, Ergün E, et al. Successful mesenchymal stem cell application in supraventricular tachycardia-related necrotizing enterocolitis: a case report[J]. Fetal Pediatr Pathol, 2021, 40(3): 250-255.
doi: 10.1080/15513815.2019.1693672 |
[43] |
Kotowski M, Litwinska Z, Klos P. Autologous cord utologous cord blood transfusion in preterm infants-could its humoral effect be the key to control prematurity-related complications? a preliminary study[J]. J Physiol Pharmacol, 2017, 68(6): 921-927.
pmid: 29550804 |
[44] |
Burkhart HM, Qureshi MY, Rossano JW, et al. Autologous stem cell therapy for hypoplastic left heart syndrome: Safety and feasibility of intraoperative intramyocardial injections[J]. J Thorac Cardiovasc Surg, 2019, 158(6): 1614-1623.
doi: S0022-5223(19)31154-7 pmid: 31345560 |
[45] |
Ciubotariu R, Scaradavou A, Ciubotariu I, et al. Impact of delayed umbilical cord clamping on public cord blood donations: can we help future patients and benefit infant donors?[J]. Transfusion, 2018, 58(6): 1427-1433.
doi: 10.1111/trf.14574 pmid: 29574750 |
[46] | Segler A, Braun T, Fischer HS, et al. Feasibility of umbilical cord blood collection in neonates at risk of brain damage—a step toward autologous cell therapy for a high-risk population[J]. Cell Transplant, 2021, 30: 1503988442. |
[47] |
Zarrabi M, Akbari MG, Amanat M, et al. The safety and efficacy of umbilical cord blood mononuclear cells in individuals with spastic cerebral palsy: a randomized double-blind sham-controlled clinical trial[J]. BMC Neurology, 2022, 22(1): 123.
doi: 10.1186/s12883-022-02636-y pmid: 35351020 |
[48] |
Cohen S, Roy J, Lachance S, et al. Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1-2 safety and feasibility study[J]. Lancet Haematol, 2020, 7(2): e134-e145.
doi: 10.1016/S2352-3026(19)30202-9 pmid: 31704264 |
[49] |
Qin M, Guan X, Wang H, et al. An effective ex-vivo approach for inducing endothelial progenitor cells from umbilical cord blood CD34+ cells[J]. Stem Cell Res Ther, 2017, 8(1): 25.
doi: 10.1186/s13287-017-0482-9 |
[50] |
Ortiz LA, Gambelli F, Mcbride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects[J]. Proc Natl Acad Sci U S A, 2003, 100(14): 8407-8411.
doi: 10.1073/pnas.1432929100 |
[51] |
Li J, Yawno T, Sutherland A, et al. Preterm white matter brain injury is prevented by early administration of umbilical cord blood cells[J]. Exp Neurol, 2016, 283: 179-187.
doi: 10.1016/j.expneurol.2016.06.017 pmid: 27317990 |
[52] |
Sun JM, Song AW, Case LE, et al. Effect of autologous cord blood infusion on motor function and brain connectivity in young children with cerebral palsy: a randomized, placebo-controlled trial[J]. Stem Cells Transl Med, 2017, 6(12): 2071-2078.
doi: 10.1002/sctm.17-0102 |
[53] | Ahn SY, Chang YS, Sung DK, et al. Optimal route for mesenchymal stem cells transplantation after severe intraventricular hemorrhage in newborn rats[J]. PLoS One, 2015, 10(7): e132919. |
[54] |
Luan Y, Zhang L, Chao S, et al. Mesenchymal stem cells in combination with erythropoietin repair hyperoxia-induced alveoli dysplasia injury in neonatal mice via inhibition of TGF-β1 signaling[J]. Oncotarget, 2016, 7(30): 47082-47094.
doi: 10.18632/oncotarget.9314 pmid: 27191651 |
[55] | Park WS, Sung SI, Ahn SY, et al. Hypothermia augments neuroprotective activity of mesenchymal stem cells for neonatal hypoxic-ischemic encephalopathy[J]. PLoS One, 2015, 10(3): e120893. |
[56] |
Herz J, Köster C, Reinboth BS, et al. Interaction between hypothermia and delayed mesenchymal stem cell therapy in neonatal hypoxic-ischemic brain injury[J]. Brain Behav Immun, 2018, 70: 118-130.
doi: S0889-1591(18)30018-7 pmid: 29454023 |
[57] |
Røsland GV, Svendsen A, Torsvik A, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation[J]. Cancer Res, 2009, 69(13): 5331-5339.
doi: 10.1158/0008-5472.CAN-08-4630 pmid: 19509230 |
[58] |
He J, Yao X, Mo P, et al. Lack of tumorigenesis and protumorigenic activity of human umbilical cord mesenchymal stem cells in NOD SCID mice[J]. BMC Cancer, 2022, 22(1): 307.
doi: 10.1186/s12885-022-09431-5 pmid: 35317758 |
[1] | 林玉聪, 高亮, 郑直. 晚期早产儿中小于胎龄儿的影响因素分析[J]. 临床儿科杂志, 2023, 41(7): 514-518. |
[2] | 赵彩艳, 孙玄, 陈玲. 早产儿血流动力学显著的动脉导管未闭危险因素和预测指标研究进展[J]. 临床儿科杂志, 2023, 41(6): 475-479. |
[3] | 王丽平, 尤优, 殷张华, 王依闻, 陈笋, 夏红萍. 支气管肺发育不良极早产儿合并肺静脉狭窄2例报告[J]. 临床儿科杂志, 2023, 41(4): 289-293. |
[4] | 习必鑫, 胡群, 刘爱国. 范可尼贫血基因治疗研究进展[J]. 临床儿科杂志, 2023, 41(2): 156-160. |
[5] | 朱兴旺, 史源. 无创高频振荡通气在早产儿呼吸支持中的临床应用[J]. 临床儿科杂志, 2023, 41(10): 641-645. |
[6] | 周建国. 超早产儿死亡原因和对策建议[J]. 临床儿科杂志, 2023, 41(10): 654-657. |
[7] | 张烨, 齐敏, 施春燕, 杨世炳, 姜舟. 超早产儿临床特征及死亡危险因素分析[J]. 临床儿科杂志, 2023, 41(10): 665-669. |
[8] | 卢晓燕, 陈绍红, 陈影影, 周文俊, 周婵, 宋燕, 李禄全, 唐文燕. 34周以下早产儿促甲状腺激素延迟升高及影响因素[J]. 临床儿科杂志, 2023, 41(10): 675-679. |
[9] | 任淑英, 张勤. 呼吸道微生态的影响因素及其在支气管肺发育不良中的意义[J]. 临床儿科杂志, 2023, 41(10): 715-720. |
[10] | 查新祎, 王依闻, 毛朋亮, 陈鸣艳, 蒋玮, 王华伟, 胡雪峰, 施丽萍, 朱雪萍, 钱继红. 乳糖酶添加剂对早产儿乳糖不耐受有效性及安全性:一项前瞻性、多中心、随机对照研究[J]. 临床儿科杂志, 2023, 41(1): 34-41. |
[11] | 位乐乐, 宋娟, 董会敏, 决珍珍, 李文冬, 徐发林, 王军. 极早产儿输血相关性坏死性小肠结肠炎危险因素分析[J]. 临床儿科杂志, 2022, 40(9): 666-671. |
[12] | 丁瑛雪. 早产儿支气管肺发育不良的表型演变[J]. 临床儿科杂志, 2022, 40(6): 407-412. |
[13] | 徐儒政, 姜旭, 孙斌. 胎龄<32周早产儿支气管肺发育不良临床特点[J]. 临床儿科杂志, 2022, 40(6): 420-424. |
[14] | 刘文强, 王军, 叶黎离, 杨倩倩, 徐艳. 容量保证机械通气在呼吸窘迫综合征早产儿中应用[J]. 临床儿科杂志, 2022, 40(6): 425-430. |
[15] | 李哲, 朱晓波, 薛江. 自主呼吸试验在早产儿拔管撤机中的应用价值[J]. 临床儿科杂志, 2022, 40(10): 755-759. |
|