[1] |
van der Lee JH, Mokkink LB, Grootenhuis MA, et al. Definitions and measurement of chronic health conditions in childhood: a systematic review[J]. JAMA, 2007, 297(24): 2741-2751.
doi: 10.1001/jama.297.24.2741
pmid: 17595275
|
[2] |
李作祥, 汪鹏, 陈香美, 等. 大数据科研分析平台在肾脏病研究的应用探讨[J]. 中国数字医学, 2019, 14(8): 29-31.
|
[3] |
Fleurence RL, Curtis LH, Califf RM, et al. Launching PCORnet, a national patient-centered clinical research network[J]. J Am Med Inform Assoc, 2014, 21(4): 578-582.
doi: 10.1136/amiajnl-2014-002747
pmid: 24821743
|
[4] |
Forrest CB, Margolis PA, Bailey LC, et al. PEDSnet: a national pediatric learning health system[J]. J Am Med Inform Assoc, 2014, 21(4): 602-606.
doi: 10.1136/amiajnl-2014-002743
pmid: 24821737
|
[5] |
McKenzie PL, Maltenfort M, Bruckner AL, et al. Evaluation of the prevalence and incidence of pediatric alopecia areata using electronic health record data[J]. JAMA Dermatol, 2022, 158(5): 547-551.
doi: 10.1001/jamadermatol.2022.0351
pmid: 35385065
|
[6] |
Lang JE, Bunnell HT, Hossain MJ, et al. Being overweight or obese and the development of asthma[J]. Pediatrics, 2018, 142(6): e20182119.
doi: 10.1542/peds.2018-2119
|
[7] |
Bailey LC, Razzaghi H, Burrows EK, et al. Assessment of 135 794 pediatric patients tested for severe acute respiratory syndrome coronavirus 2 across the United States[J]. JAMA Pediatr, 2021, 175(2): 176-184.
doi: 10.1001/jamapediatrics.2020.5052
|
[8] |
Mueller S, Jain P, Liang WS, et al. A pilot precision medicine trial for children with diffuse intrinsic pontine glioma-PNOC003: a report from the pacific pediatric neuro-oncology consortium[J]. Int J Cancer, 2019, 145(7): 1889-1901.
doi: 10.1002/ijc.32258
pmid: 30861105
|
[9] |
Ellison JS, Lorenzo M, Beck H, et al. Comparative effectiveness of paediatric kidney stone surgery (the PKIDS trial): study protocol for a patient-centred pragmatic clinical trial[J]. BMJ Open, 2022, 12(4): e056789.
doi: 10.1136/bmjopen-2021-056789
|
[10] |
Freedman DS, Goodwin Davies AJ, Phan TT, et al. Measuring BMI change among children and adolescents[J]. Pediatr Obes, 2022, 17(6): e12889.
doi: 10.1111/ijpo.v17.6
|
[11] |
Block JP, Bailey LC, Gillman MW, et al. Early antibiotic exposure and weight outcomes in young children[J]. Pediatrics, 2018, 142(6): e20180290.
doi: 10.1542/peds.2018-0290
|
[12] |
Kamal Nor N, Ghozali AH, Ismail J. Prevalence of overweight and obesity among children and adolescents with autism spectrum disorder and associated risk factors[J]. Front Pediatr, 2019, 7: 38.
doi: 10.3389/fped.2019.00038
pmid: 30842939
|
[13] |
Rammah M, Théveniau-Ruissy M, Sturny R, et al. PPARγ and NOTCH regulate regional identity in the murine cardiac outflow tract[J]. Circ Res, 2022, 131(10): 842-858.
doi: 10.1161/CIRCRESAHA.122.320766
pmid: 36205127
|
[14] |
Hampl SE, Hassink SG, Skinner AC, et al. Clinical practice guideline for the evaluation and treatment of children and adolescents with obesity[J]. Pediatrics, 2023, 151(2): e2022060640.
doi: 10.1542/peds.2022-060640
|
[15] |
Tai V, Grey A, Bolland MJ. Results of observational studies: analysis of findings from the nurses' health study[J]. PLoS One, 2014, 9(10): e110403.
doi: 10.1371/journal.pone.0110403
|
[16] |
Khare R, Utidjian L, Ruth BJ, et al. A longitudinal analysis of data quality in a large pediatric data research network[J]. J Am Med Inform Assoc, 2017, 24(6): 1072-1079.
doi: 10.1093/jamia/ocx033
pmid: 28398525
|
[17] |
Pathak J, Kho AN, Denny JC. Electronic health records-driven phenotyping: challenges, recent advances, and perspectives[J]. J Am Med Inform Assoc, 2013, 20(e2): e206-e211.
doi: 10.1136/amiajnl-2013-002428
|
[18] |
Denburg MR, Razzaghi H, Bailey LC, et al. Using electronic health record data to rapidly identify children with glomerular disease for clinical research[J]. J Am Soc Nephrol, 2019, 30(12): 2427-2435.
doi: 10.1681/ASN.2019040365
pmid: 31732612
|
[19] |
Phillips CA, Razzaghi H, Aglio T, et al. Development and evaluation of a computable phenotype to identify pediatric patients with leukemia and lymphoma treated with chemotherapy using electronic health record data[J]. Pediatr Blood Cancer, 2019, 66(9):e27876.
doi: 10.1002/pbc.v66.9
|
[20] |
Khare R, Kappelman MD, Samson C, et al. Development and evaluation of an EHR-based computable phenotype for identification of pediatric Crohn's disease patients in a national pediatric learning health system[J]. Learn Health Syst, 2020, 4(4): e10243.
|
[21] |
Wenderfer SE, Chang JC, Goodwin Davies A, et al. Using a multi-institutional pediatric learning health system to identify systemic lupus erythematosus and lupus nephritis: development and validation of computable phenotypes[J]. Clin J Am Soc Nephrol, 2022, 17(1): 65-74.
doi: 10.2215/CJN.07810621
|
[22] |
Huang W, Chen J, Weng W, et al. Development of cancer prognostic signature based on pan-cancer proteomics[J]. Bioengineered, 2020, 11(1): 1368-1381.
doi: 10.1080/21655979.2020.1847398
pmid: 33200655
|
[23] |
Kline C, Jain P, Kilburn L, et al. Upfront biology-guided therapy in diffuse intrinsic pontine glioma: therapeutic, molecular, and biomarker outcomes from PNOC003[J]. Clin Cancer Res, 2022, 28(18): 3965-3978.
doi: 10.1158/1078-0432.CCR-22-0803
pmid: 35852795
|
[24] |
Sundaram L, Gao H, Padigepati SR, et al. Predicting the clinical impact of human mutation with deep neural networks[J]. Nat Genet, 2018, 50(8): 1161-1170.
doi: 10.1038/s41588-018-0167-z
pmid: 30038395
|
[25] |
Landrum MJ, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence[J]. Nucleic Acids Res, 2018, 46(D1): D1062-D1067.
doi: 10.1093/nar/gkx1153
|
[26] |
Clark MM, Hildreth A, Batalov S, et al. Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation[J]. Sci Transl Med, 2019, 11(489): eaat6177.
doi: 10.1126/scitranslmed.aat6177
|
[27] |
Juhn Y, Liu H. Artificial intelligence approaches using natural language processing to advance EHR-based clinical research[J]. J Allergy Clin Immunol, 2020, 145(2): 463-469.
doi: S0091-6749(19)32604-1
pmid: 31883846
|
[28] |
Xiao G, Pfaff E, Prud'hommeaux E, et al. FHIR-Ontop-OMOP: building clinical knowledge graphs in FHIR RDF with the OMOP common data model[J]. J Biomed Inform, 2022, 134: 104201.
doi: 10.1016/j.jbi.2022.104201
|
[29] |
Turki H, Taieb Ma H, Shafee T, et al. Representing COVID-19 information in collaborative knowledge graphs: the case of Wikidata[J]. Semantic Web, 2022, 13(2): 233-264.
doi: 10.3233/SW-210444
|
[30] |
Kahn MG, Bailey LC, Forrest CB, et al. Building a common pediatric research terminology for accelerating child health research[J]. Pediatrics, 2014, 133(3): 516-525.
doi: 10.1542/peds.2013-1504
pmid: 24534404
|
[31] |
Gipson DS, Kirkendall ES, Gumbs-Petty B, et al. Development of a pediatric adverse events terminology[J]. Pediatrics, 2017, 139(1): e20160985.
doi: 10.1542/peds.2016-0985
|
[32] |
Carter P, Laurie GT, Dixon-Woods M. The social licence for research: why care.data ran into trouble[J]. J Med Ethics, 2015, 41(5): 404-409.
doi: 10.1136/medethics-2014-102374
pmid: 25617016
|