Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (4): 316-320.doi: 10.12372/jcp.2023.22e0286
• Continuing Medical Education • Previous Articles
Received:
2022-03-07
Online:
2023-04-15
Published:
2023-04-07
Contact:
WANG Lijie
E-mail:wlj682002@163.com
ZHANG Jinming, WANG Lijie. Research progress of renal oxygen saturation in the diagnosis of acute kidney injury ZHANG Jinming, WANG Lijie[J].Journal of Clinical Pediatrics, 2023, 41(4): 316-320.
[1] | 周国平. 急性肾损伤的诊断与治疗进展[J]. 中华实用儿科临床杂志, 2013, 28(9): 717-720. |
[2] |
Abbasciano RG, Hoxha S, Gaburro D, et al. Impact on renal function and hospital outcomes of an individualized management of cardiopulmonary bypass in congenital heart surgery: a pilot study[J]. Pediatr Cardiol, 2021, 42(8): 1862-1870.
doi: 10.1007/s00246-021-02680-4 pmid: 34296332 |
[3] |
Komaru Y, Inokuchi R, Iwagami M, et al. Correlation between the incidence and attributable mortality fraction of acute kidney injury: a systematic review[J]. Blood Purif, 2020, 49(4): 386-393.
doi: 10.1159/000505568 |
[4] |
Liberio BM, Brinton JT, Gist KM, et al. Risk factors for acute kidney injury in neonates with congenital diaphragmatic hernia[J]. J Perinatol, 2021, 41(8): 1901-1909.
doi: 10.1038/s41372-021-01119-1 pmid: 34120147 |
[5] |
Parikh AC, Tullu MS. A study of acute kidney injury in a tertiary care pediatric intensive care unit[J]. J Pediatr Intensive Care, 2021, 10(4): 264-270.
doi: 10.1055/s-0040-1716577 pmid: 34745699 |
[6] |
Niaz T, Stephens EH, Gleich SJ, et al. Acute kidney injury and renal replacement therapy after fontan operation[J]. Am J Cardiol, 2021, 161: 84-94.
doi: 10.1016/j.amjcard.2021.08.056 pmid: 34794622 |
[7] |
Zhang Y, Xiang B, Wu Y, et al. Risk factors and associated outcomes of early acute kidney injury in pediatric liver transplant recipients: a retrospective study[J]. J Pediatr Surg, 2020, 55(3): 446-450.
doi: S0022-3468(19)30507-X pmid: 31466815 |
[8] | 张婷, 李晓文. 影响新生儿急性肾损伤预后的危险因素分析[J]. 临床儿科杂志, 2021, 39(9): 646-649. |
[9] |
Van den Eynde J, Rotbi H, Gewillig M, et al. In-hospital outcomes of acute kidney injury after pediatric cardiac surgery: a meta-analysis[J]. Front Pediatr, 2021, 9: 733744.
doi: 10.3389/fped.2021.733744 |
[10] |
McCormick M, Richardson T, Warady BA, et al. Acute kidney injury in paediatric patients with sickle cell disease is associated with increased morbidity and resource utilization[J]. Br J Haematol, 2020, 189(3): 559-565.
doi: 10.1111/bjh.v189.3 |
[11] |
Bjornstad EC, Muronya W, Smith ZH, et al. Incidence and epidemiology of acute kidney injury in a pediatric Malawian trauma cohort: a prospective observational study[J]. BMC Nephrol, 2020, 21(1): 98.
doi: 10.1186/s12882-020-01755-3 pmid: 32169046 |
[12] |
Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004, 8(4): R204-R212.
doi: 10.1186/cc2872 |
[13] |
Palevsky PM, Liu KD, Brophy PD, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury[J]. Am J Kidney Dis, 2013, 61(5): 649-672.
doi: 10.1053/j.ajkd.2013.02.349 pmid: 23499048 |
[14] | 王丽杰, 刘春峰. 超声导向的儿童急性肾损伤治疗[J]. 中国小儿急救医学, 2021, 28(4): 264-268. |
[15] | 闫文娟, 张炯. 急性肾损伤的研究进展[J]. 临床与病理杂志, 2019, 39(7): 1571-1575. |
[16] | Fuhrman DY, Kellum JA, Joyce EL, et al. The use of urinary biomarkers to predict acute kidney injury in children after liver transplant[J]. Pediatr Transplant, 2020, 24(1): e13608. |
[17] | 李青, 张琦, 王晓宇, 等. 先天性心脏病患儿术后急性肾损伤的影响因素及尿NGAL、KIM-1的诊断价值分析[J]. 现代生物医学进展, 2021, 21(18): 3515-3519. |
[18] |
Vijay P, Lal BB, Sood V, et al. Cystatin C: best biomarker for acute kidney injury and estimation of glomerular filtration rate in childhood cirrhosis[J]. Eur J Pediatr, 2021, 180(11): 3287-3295.
doi: 10.1007/s00431-021-04076-1 pmid: 33978827 |
[19] |
Yoneyama F, Okamura T, Takigiku K, et al. Novel urinary biomarkers for acute kidney injury and prediction of clinical outcomes after pediatric cardiac surgery[J]. Pediatr Cardiol, 2020, 41(4): 695-702.
doi: 10.1007/s00246-019-02280-3 pmid: 31872282 |
[20] | 汪守平, 邓丽静. 小儿心脏术后急性肾损伤的诊断和治疗[J]. 四川医学, 2021, 42(2): 205-208. |
[21] | Shankar V, Raj A, Singhal S, et al. Doppler-derived renal resistive index helps predict acute kidney injury in patients undergoing living-related liver transplantation[J]. Clin Transplant, 2021, 35(5): e14263. |
[22] |
Neunhoeffer F, Wiest M, Sandner K, et al. Non-invasive measurement of renal perfusion and oxygen metabolism to predict postoperative acute kidney injury in neonates and infants after cardiopulmonary bypass surgery[J]. Br J Anaesth, 2016, 117(5): 623-634.
pmid: 27799177 |
[23] | EL-Sadek AE, El-Gamasy MA, Behiry EG, et al. Plasma cystatin C versus renal resistive index as early predictors of acute kidney injury in critically ill neonates[J]. J Pediatr Urol, 2020, 16(2): 206. |
[24] |
Chakravarti SB, Mittnacht AJ, Katz JC, et al. Multisite near-infrared spectroscopy predicts elevated blood lactate level in children after cardiac surgery[J]. J Cardiothorac Vasc Anesth, 2009, 23(5): 663-667.
doi: 10.1053/j.jvca.2009.03.014 pmid: 19447648 |
[25] |
Joffe R, Al Aklabi M, Bhattacharya S, et al. Cardiac surgery-associated kidney injury in children and renal oximetry[J]. Pediatr Crit Care Med, 2018, 19(9): 839-845.
doi: 10.1097/PCC.0000000000001656 |
[26] |
Zhang D, Ouyang C, Zhao X, et al. Renal tissue desaturation and acute kidney injury in infant cardiac surgery: a prospective propensity score-matched cohort study[J]. Br J Anaesth, 2021, 127(4): 620-628.
doi: 10.1016/j.bja.2021.06.045 |
[27] |
Lau PE, Cruz S, Garcia-Prats J, et al. Use of renal near-infrared spectroscopy measurements in congenital diaphragmatic hernia patients on ECMO[J]. J Pediatr Surg, 2017, 52(5): 689-692.
doi: S0022-3468(17)30047-7 pmid: 28190559 |
[28] |
Ortega-Loubon C, Fernández-Molina M, Fierro I, et al. Postoperative kidney oxygen saturation as a novel marker for acute kidney injury after adult cardiac surgery[J]. J Thorac Cardiovasc Surg, 2019, 157(6): 2340-2351.
doi: S0022-5223(18)32785-5 pmid: 30459107 |
[29] | 魏碧玉, 高明龙, 吴庭楣, 等. 肾区域组织氧饱和度预测紫绀型患儿心脏手术后急性肾损伤的效果[J]. 临床麻醉学杂志, 2020, 36(1): 8-12. |
[30] |
Jöbsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J]. Science, 1977, 198(4323): 1264-1267.
doi: 10.1126/science.929199 pmid: 929199 |
[31] |
Giannini I, Ferrari M, Carpi A, et al. Rat brain monitoring by near-infrared spectroscopy: an assessment of possible clinical significance[J]. Physiol Chem Phys, 1982, 14(3): 295-305.
pmid: 7185063 |
[32] |
Vaughan DL, Wickramasinghe YA, Russell GI, et al. Is allopurinol beneficial in the prevention of renal ischaemia-reperfusion injury in the rat?: evaluation by near-infrared spectroscopy[J]. Clin Sci (Lond), 1995, 88(3): 359-364.
doi: 10.1042/cs0880359 |
[33] |
Solevåg AL, Schmölzer GM, Nakstad B, et al. Association between brain and kidney near-infrared spectroscopy and early postresuscitation mortality in asphyxiated newborn piglets[J]. Neonatology, 2017, 112(1): 80-86.
doi: 10.1159/000458515 pmid: 28380491 |
[34] |
Al-Subu AM, Hacker TA, Eickhoff JC, et al. Two-site regional oxygen saturation and capnography monitoring during resuscitation after cardiac arrest in a swine pediatric ventricular fibrillatory arrest model[J]. J Clin Monit Comput, 2020, 34(1): 63-70.
doi: 10.1007/s10877-019-00291-2 pmid: 30820870 |
[35] | 刘珊珊, 李恩有. 脑氧饱和度监测在老年患者中的应用进展[J]. 中华临床医师杂志(电子版), 2013, 7(24): 11798-11800. |
[36] |
Gumulak R, Lucanova LC, Zibolen M. Use of near-infrared spectroscopy (NIRS) in cerebral tissue oxygenation monitoring in neonates[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2017, 161(2): 128-133.
doi: 10.5507/bp.2017.012 pmid: 28360433 |
[37] | 谢越涛, 邢大军, 姚翠翠, 等. 肾氧饱和度监测在婴幼儿非紫绀型先心病手术中的应用及临床意义[J]. 中国医药导报, 2018, 15(18): 154-157. |
[38] |
Loomba RS, Rausa J, Sheikholeslami D, et al. Correlation of near-infrared spectroscopy oximetry and corresponding venous oxygen saturations in children with congenital heart disease[J]. Pediatr Cardiol, 2022, 43(1): 197-206.
doi: 10.1007/s00246-021-02718-7 |
[39] |
Biedrzycka A, Lango R. Tissue oximetry in anaesthesia and intensive care[J]. Anaesthesiol Intensive Ther, 2016, 48(1): 41-48.
doi: 10.5603/AIT.2016.0005 pmid: 26966109 |
[40] |
Bailey SM, Mally PV. Review of splanchnic oximetry in clinical medicine[J]. J Biomed Opt, 2016, 21(9): 091306.
doi: 10.1117/1.JBO.21.9.091306 |
[1] | XU Jinglin, YANG Hansong, CHEN Xinhua, CHEN Jiangbin, LI Xiaoqing, ZHANG Weifeng, CHEN Dongmei. Clinical analysis of continuous blood purification in the treatment of neonatal septic shock with acute kidney injury [J]. Journal of Clinical Pediatrics, 2023, 41(6): 436-441. |
[2] | Reviewer: YANG Baowang, Reviser: HONG Xiaoyang, FENG Zhichun. Research progress of extracorporeal membrane oxygenation combined with renal replacement therapy in children [J]. Journal of Clinical Pediatrics, 2022, 40(9): 710-714. |
[3] | NIE Yingming, LIU Jing, QI Chang, et al. Clinical analysis of acute kidney injury after allogeneic hematopoietic stem cell transplantation in children [J]. Journal of Clinical Pediatrics, 2022, 40(1): 21-. |
[4] | ZHANG Ting, LI Xiaowen. Analysis of risk factors for the prognosis of neonatal acute kidney injury [J]. Journal of Clinical Pediatrics, 2021, 39(9): 646-. |
[5] | HE Xu, XIA Zhengkun. Mizoribine and benazapril-associated hyperuricemia and acute kidney injury: a case report with review of the literature [J]. Journal of Clinical Pediatrics, 2021, 39(2): 99-. |
[6] | HUANG Hui, DAI Xiaomei, WANG Sanfeng, et al. Correlation of subclinical acute kidney injury with adverse outcomes in critically ill neonates [J]. Journal of Clinical Pediatrics, 2021, 39(12): 881-. |
[7] | YAN Chongbing, MA Li, ZHANG Xiaoyue, et al. The clinical analysis of urinary cell cycle arrest biomarkers in neonatal acute kidney injury after severe asphyxia [J]. Journal of Clinical Pediatrics, 2021, 39(12): 886-. |
[8] | ZHANG Haiyang, LUO Lili, LI Deyuan, et al. Acute kidney injury caused by Kawasaki disease shock syndrome: a case report [J]. Journal of Clinical Pediatrics, 2021, 39(10): 736-. |
[9] | DAI Xiaomei, CHEN Jiao, LU Chunjiu, et al. Early predictive value of urinary IGFBP-7 in acute kidney injury in critically ill children [J]. Journal of Clinical Pediatrics, 2019, 37(4): 277-. |
[10] | CAI Cheng, QIU Gang, GONG Xiaohui, YAN Chongbing. Current state and precision management of neonatal continuous renal replacement therapy [J]. , 2018, 36(7): 553-. |
[11] | CHEN Zijin, YANG Haiping, ZHANG Gaofu, WANG Mo, LI Qiu, XU Zhene. Risk factors and outcome of acute kidney injury in very low birth weight infants [J]. , 2018, 36(6): 406-. |
[12] | ZHANG Jianjiang, YING Daojing, DOU Wenjie, SHI Peipei, TIAN Xiyan, JIA Limin, ZHANG Huating. Diagnostic value of urinary interleukin 18 in children with acute kidney injury: a meta-analysis [J]. , 2018, 36(12): 944-. |
[13] | WANG Sanfeng, CHEN Jiao,LU Chunjiu,LI Xiaozhong,LI Yanhong . Association of fluid overload with acute kidney injury and prognosis in critically ill children [J]. , 2017, 35(7): 508-. |
[14] | ZHANG Hui, YI Zhuwen, XIAO Zhenghui, LU Xiulan. The relationship of relevant biomarkers of septic acute kidney injury [J]. , 2015, 33(12): 1021-. |
[15] | SHEN Yunlin, HUANG Wenyan. The role of renal tubule remodeling in acute kidney injury [J]. , 2014, 32(9): 895-. |
|