Journal of Clinical Pediatrics ›› 2026, Vol. 44 ›› Issue (1): 1-16.doi: 10.12372/jcp.2026.25e1047
• Standard · Protocol · Guideline • Next Articles
Subspecialty Pediatric Consensus Collaborative Group, Subspecialty Group of Infectious Diseases, Society of Pediatric, Chinese Medical Association, Subspecialty Group of Infectious Diseases, Society of Pediatric, Zhejiang Medical Association, National Clinical Research Center for Children and Adolescents' Health and Diseases
Received:2025-08-17
Accepted:2025-10-21
Published:2026-01-15
Online:2026-01-05
CLC Number:
Subspecialty Pediatric Consensus Collaborative Group, Subspecialty Group of Infectious Diseases, Society of Pediatric, Chinese Medical Association, Subspecialty Group of Infectious Diseases, Society of Pediatric, Zhejiang Medical Association, National Clinical Research Center for Children and Adolescents' Health and Diseases. Expert consensus on the clinical application and individualized therapy of oxazolidinone antibiotics in children[J].Journal of Clinical Pediatrics, 2026, 44(1): 1-16.
Table 1
Oxford university levels of evidence and grades of recommendation OCEBM-2011"
| 推荐强度 | 证据等级 | 描述 |
|---|---|---|
| A | Ⅰa | RCTs的系统评价 |
| Ⅰb | 结果可信区间小的RCT | |
| Ⅰc | 显示“全或无效应”的任何证据 | |
| B | Ⅱa | 队列研究的系统评价 |
| Ⅱb | 单个的队列研究(包括低质量的RCT,如失访率>20%者) | |
| Ⅱc | 基于患儿结局的研究 | |
| Ⅲa | 病例对照研究的系统评价 | |
| Ⅲb | 单个病例对照研究 | |
| C | Ⅳ | 病例系列报告、低质量队列研究和低质量病例对照研究 |
| D | Ⅴ | 专家意见(即无临床研究支持的仅依据基础研究或临床经验的推测) |
| [1] | Benko R, Matuz M, Peto Z, et al. Trends in the hospital-sector consumption of the WHO AWaRe Reserve group antibiotics in EU/EEA countries and the United Kingdom, 2010 to 2018[J]. Euro Surveill, 2022, 27(41): 2101058. |
| [2] |
Wang R, Yang Q, Zhang S, et al. Trends and correlation of antibiotic susceptibility and antibiotic consumption at a large teaching hospital in China (2007-2016): a surveillance study[J]. Ther Clin Risk Manag, 2019, 15: 1019-1027.
doi: 10.2147/TCRM |
| [3] |
Goto R, Inose R, Kusama Y, et al. Trends of the use of anti-methicillin-resistant Staphylococcus aureus agents in japan based on sales data from 2006 to 2015[J]. Biol Pharm Bull, 2020, 43(12): 1906-1910.
doi: 10.1248/bpb.b20-00605 pmid: 33268708 |
| [4] |
Freudenhammer M, Hufnagel M, Steib-Bauert M, et al. Antibiotic use in pediatric acute care hospitals: an analysis of antibiotic consumption data from Germany, 2013-2020 [J]. Infection, 2024, 52(3): 825-837.
doi: 10.1007/s15010-023-02112-w |
| [5] |
Cojutti P, Maximova N, Crichiutti G, et al. Pharma-cokinetic/pharmacodynamic evaluation of linezolid in hospitalized paediatric patients: a step toward dose optimization by means of therapeutic drug monitoring and Monte Carlo simulation[J]. J Antimicrob Chemother, 2015, 70(1): 198-206.
doi: 10.1093/jac/dku337 |
| [6] |
Zou F, Cui Z, Lou S, et al. Adverse drug events associated with linezolid administration: a real-world pharmacovigilance study from 2004 to 2023 using the FAERS database[J]. Front Pharmacol, 2024, 15: 1338902.
doi: 10.3389/fphar.2024.1338902 |
| [7] |
Wang J, Xue Y, Nie W, et al. Safety and tolerability of contezolid versus linezolid for short-term treatment of rifampicin-resistant pulmonary tuberculosis: a randomized controlled study[J]. Infect Drug Resist, 2025, 18: 3307-3315.
doi: 10.2147/IDR.S516991 pmid: 40635770 |
| [8] |
Liu P, Jiang Y, Jiao L, et al. Strategies for the discovery of oxazolidinone antibacterial agents: development and future perspectives[J]. J Med Chem, 2023, 66(20): 13860-13873.
doi: 10.1021/acs.jmedchem.3c01040 pmid: 37807849 |
| [9] |
Diekema DJ, Jones RN. Oxazolidinone antibiotics[J]. Lancet, 2001, 358(9297): 1975-1982.
doi: 10.1016/S0140-6736(01)06964-1 pmid: 11747939 |
| [10] |
Mendes RE, Hogan PA, Streit JM, et al. Zyvox(R) Annual Appraisal of Potency and Spectrum (ZAAPS) program: report of linezolid activity over 9 years (2004-12)[J]. J Antimicrob Chemother, 2014, 69(6): 1582-1588.
doi: 10.1093/jac/dkt541 |
| [11] | Singh B, Cocker D, Ryan H, et al. Linezolid for drug-resistant pulmonary tuberculosis[OL/J]. Cochrane Database Syst Rev, 2019, 3(3): CD012836. |
| [12] | Wang T, Zhang H, Feng R, et al. The in vitro antimicrobial activity of linezolid against unconventional pathogens[J]. PeerJ, 2025, 13: e18825. |
| [13] |
Zahedi Bialvaei A, Rahbar M, Yousefi M, et al. Linezolid: a promising option in the treatment of Gram-positives[J]. J Antimicrob Chemother, 2017, 72(2): 354-364.
doi: 10.1093/jac/dkw450 pmid: 27999068 |
| [14] |
Zhang GX, Liu TT, Ren AX, et al. Advances in contezolid: novel oxazolidinone antibacterial in Gram-positive treatment[J]. Infection, 2024, 52(3): 787-800.
doi: 10.1007/s15010-024-02287-w |
| [15] | Guo Q, Xu L, Tan F, et al. A Novel Oxazolidinone, contezolid (MRX-I), expresses anti-mycobacterium abscessus activity in vitro[J]. Antimicrob Agents Chemother, 2021, 65(11): e0088921. |
| [16] |
Jiang G, Liu R, Xue Y, et al. Contezolid harbored equivalent efficacy to linezolid in tuberculosis treatment in a prospective and randomized early bactericidal activity study[J]. Infect Drug Resist, 2025, 18: 261-268.
doi: 10.2147/IDR.S499816 pmid: 39830036 |
| [17] |
Burdette SD, and Trotman R. Tedizolid: The first once-daily oxazolidinone class antibiotic[J]. Clin Infect Dis, 2015, 61(8): 1315-1321.
doi: 10.1093/cid/civ501 pmid: 26105167 |
| [18] |
Brenciani A, Morroni G, Schwarz S, et al. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved[J]. J Antimicrob Chemother, 2022, 77(10): 2596-2621.
doi: 10.1093/jac/dkac263 pmid: 35989417 |
| [19] |
Wiskirchen DE, Shepard A, Kuti JL, et al. Determination of tissue penetration and pharmacokinetics of linezolid in patients with diabetic foot infections using in vivo microdialysis[J]. Antimicrob Agents Chemother, 2011, 55(9): 4170-4175.
doi: 10.1128/AAC.00445-11 pmid: 21709078 |
| [20] |
Zhu L, Zeng X, Shi Y, et al. Effectiveness, safety, and pharmacokinetics of linezolid in pediatric bacterial central nervous system infections[J]. J Infect Dis, 2025, 232(2): 430-440.
doi: 10.1093/infdis/jiaf169 pmid: 40179267 |
| [21] |
Schwameis R, Syré S, Sarahrudi K, et al. Penetration of linezolid into synovial fluid and muscle tissue after elective arthroscopy[J]. J Antimicrob Chemother, 2017, 72(10): 2817-2822.
doi: 10.1093/jac/dkx219 pmid: 29091212 |
| [22] |
Bozdogan B, and Appelbaum PC. Oxazolidinones: activity, mode of action, and mechanism of resistance[J]. Int J Antimicrob Agents, 2004, 23(2): 113-119.
doi: 10.1016/j.ijantimicag.2003.11.003 |
| [23] |
Abdelgawad N, Wasserman S, Abdelwahab MT, et al. Linezolid population pharmacokinetic model in plasma and cerebrospinal fluid among patients with tuberculosis meningitis[J]. J Infect Dis, 2024, 229(4): 1200-1208.
doi: 10.1093/infdis/jiad413 |
| [24] |
Sahre M, Sabarinath S, Grant M, et al. Skin and soft tissue concentrations of tedizolid (formerly torezolid), a novel oxazolidinone, following a single oral dose in healthy volunteers[J]. Int J Antimicrob Agents, 2012, 40(1): 51-54.
doi: 10.1016/j.ijantimicag.2012.03.006 |
| [25] | Yogev R, Patterson LE, Kaplan SL, et al. Linezolid for the treatment of complicated skin and skin structure infections in children[J]. Pediatr Infect Dis J, 2003, 22(9 Suppl): S172-S177. |
| [26] | Liu Q, He D, Wang L, et al. Efficacy and safety of antibiotics in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) Infections: A systematic review and network meta-analysis[J]. Antibiotics (Basel), 2024, 13(9): 866. |
| [27] |
Porchera BR, da Silva CM, Miranda RP, et al. Linezolid and vancomycin for nosocomial infections in pediatric patients: a systematic review[J]. J Pediatr (Rio J), 2024, 100(3): 242-249.
doi: 10.1016/j.jped.2023.08.011 |
| [28] |
Shi C, Jin W, Xie Y, et al. Efficacy and safety of daptomycin versus linezolid treatment in patients with vancomycin-resistant enterococcal bacteraemia: an updated systematic review and meta-analysis[J]. J Glob Antimicrob Resist, 2020, 21: 235-245.
doi: S2213-7165(19)30262-0 pmid: 31629937 |
| [29] | Chiusaroli L, Liberati C, Rulli L, et al. Therapeutic options and outcomes for the treatment of children with gram-positive bacteria with resistances of concern: a systematic review[J]. Antibiotics (Basel), 2023, 12(2): 261. |
| [30] |
Paakkonen M, and Peltola H. Simplifying the treatment of acute bacterial bone and joint infections in children[J]. Expert Rev Anti Infect Ther, 2011, 9(12): 1125-1131.
doi: 10.1586/eri.11.140 pmid: 22114963 |
| [31] |
Chen CJ, Chiu CH, Lin TY, et al. Experience with linezolid therapy in children with osteoarticular infections[J]. Pediatr Infect Dis J, 2007, 26(11): 985-988.
doi: 10.1097/INF.0b013e31812e62dc |
| [32] |
Banniettis N, Sharma R, Hand I, et al. Steady-state pharmacokinetics of oral linezolid suspension in a premature infant with osteomyelitis[J]. J Antimicrob Chemother, 2016, 71(6): 1738.
doi: 10.1093/jac/dkv507 pmid: 26851607 |
| [33] |
Shi X, Wu Y, Ni H, et al. Efficacy and safety of different antibiotic therapies for bone and joint infections: a network meta-analysis of randomized controlled trials[J]. Curr Pharm Des, 2023, 29(29): 2313-2322.
doi: 10.2174/0113816128236536231010051130 |
| [34] | Miller LG, Flores EA, Launer B, et al. Safety and tolerability of tedizolid as oral treatment for bone and joint infections[J]. Microbiol Spectr, 2023, 11(5): e0128223. |
| [35] |
Fei ZT, Huang W, Zhou DP, et al. Clinical efficacy of linezolid in the treatment of tuberculous meningitis: a retrospective analysis and literature review[J]. BMC Infect Dis, 2025, 25(1): 467.
doi: 10.1186/s12879-025-10874-x |
| [36] | Pintado V, Pazos R, Jimenez-Mejias ME, et al. Linezolid for therapy of Staphylococcus aureus meningitis: a cohort study of 26 patients[J]. Infect Dis (Lond), 2020, 52(11): 808-815. |
| [37] |
Chen HA, Yang CJ, Tsai MS, et al. Linezolid as salvage therapy for central nervous system infections due to methicillin-resistant Staphylococcus aureus at two medical centers in Taiwan[J]. J Microbiol Immunol Infect, 2020, 53(6): 909-915.
doi: 10.1016/j.jmii.2020.08.004 |
| [38] |
Garcia-Gil V, Gomez-Gil MR, Escosa-Garcia L, et al. Linezolid and vancomycin-resistant Enterococcus faecium peritonitis in a child after liver transplantation[J]. Enferm Infecc Microbiol Clin, 2015, 33(1): 66.
doi: 10.1016/j.eimc.2014.05.008 |
| [39] | You D, Su Y, Sun X, et al. Linezolid in the treatment of severe intraabdominal infection: A STROBE-compliant retrospective study[J]. Medicine (Baltimore), 2022, 101(33): e30038. |
| [40] |
Zhao Y, Xin X, Wang B, et al. The Therapeutic effect of contezolid in complex intra-abdominal infections[J]. Infect Drug Resist, 2024, 17: 3343-3351.
doi: 10.2147/IDR.S460299 pmid: 39131516 |
| [41] |
Jang HC, Kim SH, Kim KH, et al. Salvage treatment for persistent methicillin-resistant Staphylococcus aureus bacteremia: efficacy of linezolid with or without carbapenem[J]. Clin Infect Dis, 2009, 49(3): 395-401.
doi: 10.1086/599187 |
| [42] |
Kaasch AJ, Lopez-Cortes LE, Rodriguez-Bano J, et al. Efficacy and safety of an early oral switch in low-risk Staphylococcus aureus bloodstream infection (SABATO): an international, open-label, parallel-group, randomised, controlled, non-inferiority trial[J]. Lancet Infect Dis, 2024, 24(5): 523-534.
doi: 10.1016/S1473-3099(23)00756-9 pmid: 38244557 |
| [43] | Miyamoto T, Tomoyasu T, and Miyaji K. Successful treatment of pediatric endocarditis and pericarditis due to MRSA with linezolid[J]. Jpn J Antibiot, 2011, 64(2): 109-112. |
| [44] |
Mitsutake K, Shinya N, Seki M, et al. Antimicrobial therapy and outcome of methicillin-resistant Staphylococcus aureus endocarditis: a retrospective multicenter study in Japan[J]. J Infect Chemother, 2024, 30(9): 860-866.
doi: 10.1016/j.jiac.2024.02.027 pmid: 38432557 |
| [45] |
Iversen K, Ihlemann N, Gill SU, et al. Partial oral versus intravenous antibiotic treatment of endocarditis[J]. N Engl J Med, 2019, 380(5): 415-424.
doi: 10.1056/NEJMoa1808312 |
| [46] | McDonald EG, Aggrey G, Aslan AT, et al. Guidelines for diagnosis and management of infective endocarditis in adults: a WikiGuidelines group consensus statement[J]. JAMA Netw Open, 2023, 6(7): e2326366. |
| [47] | 黄诗喻, 王薇, 朱荻绮. 复杂性先天性心脏病术后耐甲氧西林金黄色葡萄球菌所致儿童感染性心内膜炎的救治与思考[J]. 临床儿科杂志, 2024, 42(8): 728-736. |
| Huang SY, Wang W, Zhu DQ, et al. Treatment and reflection of infective endocarditis caused by methicillin-resistant Staphylococcus aureus in children after complex congenital heart disease[J]. Linchuang Erke Zazhi, 2024, 42(8): 728-736. | |
| [48] |
Agyeman AA, Ofori-Asenso R. Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: a systematic review and meta-analysis[J]. Ann Clin Microbiol Antimicrob, 2016, 15(1): 41.
doi: 10.1186/s12941-016-0156-y |
| [49] |
Korotych O, Achar J, Gurbanova E, et al. Effectiveness and safety of modified fully oral 9-month treatment regimens for rifampicin-resistant tuberculosis: a prospective cohort study[J]. Lancet Infect Dis, 2024, 24(10): 1151-1161.
doi: 10.1016/S1473-3099(24)00228-7 pmid: 38880112 |
| [50] |
Conradie F, Diacon AH, Ngubane N, et al. Treatment of highly drug-resistant pulmonary tuberculosis[J]. N Engl J Med, 2020, 382(10): 893-902.
doi: 10.1056/NEJMoa1901814 |
| [51] |
Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline-Pretomanid-Linezolid regimens for drug-resistant tuberculosis[J]. N Engl J Med, 2022, 387(9): 810-823.
doi: 10.1056/NEJMoa2119430 |
| [52] |
Nyang'wa BT, Berry C, Kazounis E, et al. A 24-week, all-oral regimen for rifampin-resistant tuberculosis[J]. N Engl J Med, 2022, 387(25): 2331-2343.
doi: 10.1056/NEJMoa2117166 |
| [53] | World Health Organization. Key updates to the treatment of drug-resistant tuberculosis: rapid communication[R/OL]. [2025-08-27]. Geneva: WHO, June 2024. https://www.who.int/publications/i/item/B09123. |
| [54] |
Guglielmetti L, Khan U, Velasquez GE, et al. Oral regimens for rifampin-resistant, fluoroquinolone-susceptible tuberculosis[J]. N Engl J Med, 2025, 392(5): 468-482.
doi: 10.1056/NEJMoa2400327 |
| [55] | World Health Organization. WHO consolidated guidelines on tuberculosis: module 4: treatment and care[S/OL]. [2025-08-27]. Geneva: WHO, April 15, 2025. https://www.who.int/publications/i/item/9789240107243. |
| [56] | Garcia-Prats AJ, Schaaf HS, Draper HR, et al. Pharma-cokinetics, optimal dosing, and safety of linezolid in children with multidrug-resistant tuberculosis: Combined data from two prospective observational studies[J]. PLoS Med, 2019, 16(4): e1002789. |
| [57] |
Xiong YJ, Xiao Y, Xie L, et al. Contezolid for the treatment of drug-resistant tuberculosis in China: a clinical case series[J]. Infect Drug Resist, 2024, 17: 3491-3499.
doi: 10.2147/IDR.S469509 |
| [58] |
Wang J, Nie W, Ma L, et al. Clinical utility of contezolid-containing regimens in 25 cases of linezolid-intolerable tuberculosis patients[J]. Infect Drug Resist, 2023, 16: 6237-6245.
doi: 10.2147/IDR.S425743 pmid: 37745897 |
| [59] |
Sun JM, Li J, Xu XH. Successful management of Myco-bacterium abscessus pneumonia in a 53-day-old immuno-competent infant[J]. Diagn Microbiol Infect Dis, 2024, 109(3): 116296.
doi: 10.1016/j.diagmicrobio.2024.116296 |
| [60] | Zhanel GG, Baxter MR, Golden AR, et al. Gram-positive pathogens from Canadian hospitals: 17 years of results from the CANWARD study (2007-23)[J]. J Antimicrob Chemother, 2025, 80(Supplement_2): ii5-ii14. |
| [61] | Cortes-Penfield N, and Ryder JH. Should linezolid replace clindamycin as the adjunctive antimicrobial of choice in group a streptococcal necrotizing soft tissue infection and toxic shock syndrome? a focused debate[J]. Clin Infect Dis, 2023, 76(2): 346-350. |
| [62] |
Wu X, Wang C, He L, et al. Antimicrobial resistance profile of methicillin-resistant Staphylococcus aureus isolates in children reported from the ISPED surveillance of bacterial resistance, 2016-2021[J]. Front Cell Infect Microbiol, 2023, 13: 1102779.
doi: 10.3389/fcimb.2023.1102779 |
| [63] |
Arrieta AC, Ang JY, Espinosa C, et al. Pharmacokinetics and safety of single-dose tedizolid phosphate in children 2 to <12 years of age[J]. Pediatr Infect Dis J, 2021, 40(4): 317-323.
doi: 10.1097/INF.0000000000003030 |
| [64] |
Bradley JS, Antadze T, Ninov B, et al. Safety and efficacy of oral and/or intravenous tedizolid phosphate from a randomized phase 3 trial in adolescents with acute bacterial skin and skin structure infections[J]. Pediatr Infect Dis J, 2021, 40(3): 238-244.
doi: 10.1097/INF.0000000000003010 pmid: 33395210 |
| [65] |
Mngqibisa R, Fofanov O, Grazioso CF, et al. A phase 3 study of the safety and efficacy of Tedizolid phosphate in patients <12 years of age with acute bacterial skin and skin structure infections[J]. Pediatr Infect Dis J, 2025, 44(6): 533-538.
doi: 10.1097/INF.0000000000004807 pmid: 40233296 |
| [66] | Li D, Sabato PE, Guiastrennec B, et al. Population pharmacokinetics, exposure-response, and probability of target attainment analyses for tedizolid in adolescent patients with acute bacterial skin and skin structure infections[J]. Antimicrob Agents Chemother, 2021, 65(12): e0089521. |
| [67] |
Wei XC, Zhao MF, Lv HR, et al. Pharmacokinetic/pharmacodynamic analysis of tedizolid phosphate against Staphylococcus aureus and Streptococcus pneumoniae in children, adolescents, and adults by Monte Carlo simulation[J]. J Glob Antimicrob Resist, 2025, 40: 15-25.
doi: 10.1016/j.jgar.2024.11.011 |
| [68] |
Liu HY, Bi XF, Wang YJ, et al. Compassionate use of contezolid in a toddler with severe community-acquired pneumonia induced by Staphylococcus aureus: a case report and follow-up[J]. Front Pediatr, 2024, 12: 1321447.
doi: 10.3389/fped.2024.1321447 |
| [69] |
Shi S, Feng B, Li D, et al. Treatment of tuberculous pleurisy with contezolid in a child with glucose-6-phosphate dehydrogenase deficiency: the first case report[J]. Pediatr Infect Dis J, 2024, 43(9): 869-871.
doi: 10.1097/INF.0000000000004369 pmid: 39163300 |
| [70] |
Ding W, Shen L, Li R, et al. Treatment of pre-extensively drug-resistant tuberculosis in a 4-month-old infant using a regimen of bedaquiline, delamanid, and contezolid[J]. Eur J Clin Microbiol Infect Dis, 2025, 44(7): 1729-1734.
doi: 10.1007/s10096-025-05128-2 |
| [71] | 中国防痨协会《中国防痨杂志》编辑委员会, 首都医科大学附属北京胸科医院/北京市结核病胸部肿瘤研究所, Inspire-CODA研究组. 康替唑胺治疗结核病专家共识[J]. 中国防痨杂志, 2025, 47(2): 123-129. |
| Chinese Anti-Tuberculosis Association; Editorial Board of Chinese Journal of Antituberculosis; Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute; Inspire-CODA Study Group. Expert consensus on contezolid in the treatment of tuberculosis[J]. Zhongguo Fanglao Zazhi, 2025, 47(2): 123-129. | |
| [72] |
Stalker DJ, Jungbluth GL. Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial[J]. Clin Pharmacokinet, 2003, 42(13): 1129-1140.
doi: 10.2165/00003088-200342130-00004 pmid: 14531724 |
| [73] |
Shao H, Shi D, Dai Y. Linezolid and the risk of QT interval prolongation: a pharmacovigilance study of the Food and Drug Administration Adverse Event Reporting System[J]. Br J Clin Pharmacol, 2023, 89(4): 1386-1392.
doi: 10.1111/bcp.v89.4 |
| [74] |
Metaxas EI, Falagas ME. Update on the safety of linezolid[J]. Expert Opin Drug Saf, 2009, 8(4): 485-491.
doi: 10.1517/14740330903049706 pmid: 19538105 |
| [75] | Zhu L, Zeng X, Wu Y, et al. Pharmacokinetics and hematologic toxicity of linezolid in children: a prospective, two-center cohort study[J]. Antimicrob Agents Chemother, 2025, 69(9): e0029425. |
| [76] |
Kato H, Hagihara M, Asai N, et al. A systematic review and meta-analysis of myelosuppression in pediatric patients treated with linezolid for Gram-positive bacterial infections[J]. J Infect Chemother, 2021, 27(8): 1143-1150.
doi: 10.1016/j.jiac.2021.03.003 pmid: 33727025 |
| [77] | Nambiar S, Rellosa N, Wassel RT, et al. Linezolid-associated peripheral and optic neuropathy in children[J]. Pediatrics, 2011, 127(6): e1528-e1532. |
| [78] |
Narita M, Tsuji BT, and Yu VL. Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome[J]. Pharmacotherapy, 2007, 27(8): 1189-1197.
doi: 10.1592/phco.27.8.1189 pmid: 17655517 |
| [79] |
Gatti M, Fusaroli M, Raschi E, et al. Serious adverse events with tedizolid and linezolid: pharmacovigilance insights through the FDA adverse event reporting system[J]. Expert Opin Drug Saf, 2021, 20(11): 1421-1431.
doi: 10.1080/14740338.2021.1956461 |
| [80] |
Ozkaya-Parlakay A, Kara A, Celik M, et al. Early lactic acidosis associated with linezolid therapy in paediatric patients[J]. Int J Antimicrob Agents, 2014, 44(4): 334-336.
doi: 10.1016/j.ijantimicag.2014.06.017 |
| [81] |
Wiener M, Guo Y, Patel G, et al. Lactic acidosis after treatment with linezolid[J]. Infection, 2007, 35(4): 278-281.
pmid: 17646908 |
| [82] |
Prokocimer P, De Anda C, Fang E, et al. Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial[J]. JAMA, 2013, 309(6): 559-569.
doi: 10.1001/jama.2013.241 pmid: 23403680 |
| [83] |
Zhao X, Huang H, Yuan H, et al. A Phase III multicentre, randomized, double-blind trial to evaluate the efficacy and safety of oral contezolid versus linezolid in adults with complicated skin and soft tissue infections[J]. J Antimicrob Chemother, 2022, 77(6): 1762-1769.
doi: 10.1093/jac/dkac073 |
| [84] | Stergiotis M, Ammann RA, Droz S, et al. Pediatric fever in neutropenia with bacteremia-Pathogen distribution and in vitro antibiotic susceptibility patterns over time in a retrospective single-center cohort study[J]. PLoS One, 2021, 16(2): e0246654. |
| [85] |
Castagnola E, Fontana V, Caviglia I, et al. A prospective study on the epidemiology of febrile episodes during chemotherapy-induced neutropenia in children with cancer or after hemopoietic stem cell transplantation[J]. Clin Infect Dis, 2007, 45(10): 1296-1304.
doi: 10.1086/522533 pmid: 17968824 |
| [86] |
Smith PF, Birmingham MC, Noskin GA, et al. Safety, efficacy and pharmacokinetics of linezolid for treatment of resistant Gram-positive infections in cancer patients with neutropenia[J]. Ann Oncol, 2003, 14(5): 795-801.
doi: 10.1093/annonc/mdg211 pmid: 12702536 |
| [87] |
Jaksic B, Martinelli G, Perez-Oteyza J, et al. Efficacy and safety of linezolid compared with vancomycin in a randomized, double-blind study of febrile neutropenic patients with cancer[J]. Clin Infect Dis, 2006, 42(5): 597-607.
doi: 10.1086/500139 pmid: 16447103 |
| [88] |
Moschovi M, Trimis G, Tsotra M, et al. Efficacy and safety of linezolid in immunocompromised children with cancer[J]. Pediatr Int, 2010, 52(5): 694-698.
doi: 10.1111/j.1442-200X.2010.03097.x pmid: 20149126 |
| [89] |
Rafailidis PI, Kouranos VD, Christodoulou C, et al. Linezolid for patients with neutropenia: are bacteriostatic agents appropriate?[J]. Expert Rev Anti Infect Ther, 2009, 7(4): 415-422.
doi: 10.1586/eri.09.11 pmid: 19400761 |
| [90] | Mayer K, Hegge N, Molitor E, et al. Comparison of Empiric antibiotic escalation therapy with vancomycin (VAN) versus linezolid (LIN) in patients with febrile neutropenia[J]. Mediterr J Hematol Infect Dis, 2022, 14(1): e2022032. |
| [91] |
Zhou D, Shi T, Zhao S, et al. Linezolid is safe on platelet count for AML patients during myelosuppression after consolidation chemotherapy[J]. J Clin Pharm Ther, 2020, 45(4): 755-758.
doi: 10.1111/jcpt.13159 pmid: 32403181 |
| [92] |
Brooks JT, Solans BP, Beranger A, et al. Linezolid pharmacokinetic-anemia modeling in children with rifampicin-resistant tuberculosis[J]. Clin Infect Dis, 2024, 79(6): 1495-502.
doi: 10.1093/cid/ciae497 pmid: 39422476 |
| [93] |
Jones SJ, Nichols KR, DeYoung HL, et al. Linezolid-associated thrombocytopenia in children with renal impairment[J]. J Pediatric Infect Dis Soc, 2015, 4(3): 272-275.
doi: 10.1093/jpids/piu035 pmid: 26407433 |
| [94] |
Chen C, Guo DH, Cao X, et al. Risk factors for thrombocytopenia in adult chinese patients receiving linezolid therapy[J]. Curr Ther Res Clin Exp, 2012, 73(6): 195-206.
doi: 10.1016/j.curtheres.2012.07.002 |
| [95] |
Abouelkheir M, Aldawsari MR, Ghonem L, et al. Evaluation of pharmacokinetic target attainment and hematological toxicity of linezolid in pediatric patients[J]. Eur J Clin Pharmacol, 2024, 80(11): 1807-1817.
doi: 10.1007/s00228-024-03740-3 |
| [96] | Yang S, Guo W, Chen M, et al. Prevalence and risk factors for severe linezolid-associated thrombocytopenia in pediatric patients: an analysis of a public database[J]. Medicine (Baltimore), 2023, 102(24): e34059. |
| [97] |
Bayram N, Duzgol M, Kara A, et al. Linezolid-related adverse effects in clinical practice in children[J]. Arch Argent Pediatr, 2017, 115(5): 470-475.
doi: 10.5546/aap.2017.eng.470 pmid: 28895694 |
| [98] | World Health Organization. WHO Operational handbook on tuberculosis: module 5: management of tuberculosis in children and adolescents[M]. Geneva: WHO, 2022. https://www.who.int/publications/i/item/9789240046832. |
| [99] |
Libershteyn Y. Ethambutol/Linezolid toxic optic neuropathy[J]. Optom Vis Sci, 2016, 93(2): 211-217.
doi: 10.1097/OPX.0000000000000783 pmid: 26636399 |
| [100] |
Heidari S, Khalili H. Linezolid pharmacokinetics: a systematic review for the best clinical practice[J]. Eur J Clin Pharmacol, 2023, 79(2): 195-206.
doi: 10.1007/s00228-022-03446-4 pmid: 36565357 |
| [101] |
Bandin-Vilar E, Garcia-Quintanilla L, Castro-Balado A, et al. A review of population pharmacokinetic analyses of linezolid[J]. Clin Pharmacokinet, 2022, 61(6): 789-817.
doi: 10.1007/s40262-022-01125-2 |
| [102] |
Qin Y, Zhang LL, Ye YR, et al. Parametric population pharmacokinetics of linezolid: a systematic review[J]. Br J Clin Pharmacol, 2022, 88(9): 4043-4066.
doi: 10.1111/bcp.v88.9 |
| [103] | Duan LF, Li JJ, Shen LR, et al. Therapeutic drug monitoring of linezolid in Chinese premature neonates: a population pharmacokinetic analysis and dosage optimization[J]. Antimicrob Agents Chemother, 2024, 68(11): e0114824. |
| [104] | Jungbluth GL, Welshman IR, Hopkins NK. Linezolid pharmacokinetics in pediatric patients: an overview[J]. Pediatr Infect Dis J, 2003, 22(9 Suppl): S153-S157. |
| [105] |
Kearns GL, Jungbluth GL, Abdel-Rahman SM, et al. Impact of ontogeny on linezolid disposition in neonates and infants[J]. Clin Pharmacol Ther, 2003, 74(5): 413-422.
pmid: 14586382 |
| [106] | Yang M, Zhao L, Wang X, et al. Population phar-macokinetics and dosage optimization of linezolid in critically ill pediatric patients[J]. Antimicrob Agents Chemother, 2023, 95(5): e02504-e02520. |
| [107] | Tian X, Jiang T, Dong L, et al. Population pharmacokinetics and clinical assessment of linezolid in pediatric bacterial infections[J]. Antimicrob Agents Chemother, 2025, 69(5): e0129924. |
| [108] |
Rayner CR, Forrest A, Meagher AK, et al. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme[J]. Clin Pharmacokinet, 2003, 42(15): 1411-1423.
doi: 10.2165/00003088-200342150-00007 pmid: 14674791 |
| [109] |
Jones RN, Fritsche TR, Sader HS, et al. Zyvox annual appraisal of potency and spectrum program results for 2006: an activity and spectrum analysis of linezolid using clinical isolates from 16 countries[J]. Diagn Microbiol Infect Dis, 2007, 59(2): 199-209.
doi: 10.1016/j.diagmicrobio.2007.06.001 |
| [110] |
Wu F, Zhang XS, Dai Y, et al. Dosage strategy of linezolid according to the trough concentration target and renal function in Chinese critically ill patients[J]. Front Pharmacol, 2022, 13: 844567.
doi: 10.3389/fphar.2022.844567 |
| [111] |
Lin B, Hu Y, Xu P, et al. Expert consensus statement on therapeutic drug monitoring and individualization of linezolid[J]. Front Public Health, 2022, 10: 967311.
doi: 10.3389/fpubh.2022.967311 |
| [112] |
Rao GG, Konicki R, Cattaneo D, et al. Therapeutic drug monitoring can improve linezolid dosing regimens in current clinical practice: a review of linezolid pharmacokinetics and Pharmacodynamics[J]. Ther Drug Monit, 2020, 42(1): 83-92.
doi: 10.1097/FTD.0000000000000710 pmid: 31652190 |
| [113] |
王亚杰, 王晓玲, 钱素云, 等. 利奈唑胺致重症感染患儿血小板减少回顾性分析[J]. 中国药物警戒, 2022, 19(8): 904-907.
doi: 10.19803/j.1672-8629.2022.08.18 |
| Wang YJ, Wang XL, Qian SY, Yang M. Retrospective analysis of linezolid-associated thrombocytopenia in children with severe infection[J]. Zhongguo Yaowu Jingjie, 2022, 19(8): 904-907. | |
| [114] |
Huo BN, Wu YE, Shu L, et al. Relationship between linezolid exposure and the typical clinical laboratory safety and bacterial clearance in chinese pediatric patients[J]. Front Pharmacol, 2022, 13: 926711.
doi: 10.3389/fphar.2022.926711 |
| [115] |
Ogami C, Tsuji Y, To H, et al. Pharmacokinetics, toxicity and clinical efficacy of linezolid in Japanese pediatric patients[J]. J Infect Chemother, 2019, 25(12): 979-986.
doi: S1341-321X(19)30160-6 pmid: 31208925 |
| [116] |
He N, Su S, Yan Y, et al. The benefit of individualized vancomycin dosing via pharmacokinetic tools: a systematic review and meta-analysis[J]. Ann Pharmacother, 2020, 54(4): 331-343.
doi: 10.1177/1060028019887363 pmid: 31694384 |
| [117] |
Mockeliunas L, Keutzer L, Sturkenboom MGG, et al. Model-informed precision dosing of linezolid in patients with drug-resistant tuberculosis[J]. Pharmaceutics, 2022, 14(4): 753.
doi: 10.3390/pharmaceutics14040753 |
| [118] |
Shi L, Zhang Y, Duan L, et al. Dose optimisation of linezolid in critically ill patients based on a population pharmacokinetic model: a two-centre prospective interventional study[J]. Int J Antimicrob Agents, 2023, 62(2): 106881.
doi: 10.1016/j.ijantimicag.2023.106881 |
| [119] | Starp J, Leonhardt A, Zoller M, et al. Towards model-informed precision dosing of intravenous linezolid: a multicentre external evaluation of pharmacokinetic models in critically ill adults[J]. Clin Microbiol Infect, 2025: S1198-743 X(25)00447-1. |
| [120] |
Velarde-Salcedo R, Pérez-González LF, Rodríguez-Báez AS, et al. Model-informed precision dosing of antimicrobial drugs in pediatrics: experiences from a pilot scale program[J]. Eur J Pediatr, 2023, 182(9): 4143-4152.
doi: 10.1007/s00431-023-05103-z pmid: 37436522 |
| [121] | Pea F, Cojutti PG, and Baraldo M. A 10-year experience of therapeutic drug monitoring (TDM) of linezolid in a hospital-wide population of patients receiving conventional dosing: is there enough evidence for suggesting TDM in the majority of patients? [J]. Basic Clin Pharmacol Toxicol, 2017, 121(4): 303-308. |
| [122] |
Fang J, Chen C, Wu Y, et al. Does the conventional dosage of linezolid necessitate therapeutic drug monitoring? Experience from a prospective observational study[J]. Ann Transl Med, 2020, 8(7): 493.
doi: 10.21037/atm.2020.03.207 pmid: 32395537 |
| [123] |
Morata L, De la Calle C, Gomez-Cerquera JM, et al. Risk factors associated with high linezolid trough plasma concentrations[J]. Expert Opin Pharmacother, 2016, 17(9): 1183-1187.
doi: 10.1080/14656566.2016.1182154 pmid: 27156708 |
| [124] | Souza E, Crass RL, Felton J, et al. Accumulation of major linezolid metabolites in patients with renal impairment[J]. Antimicrob Agents Chemother, 2020, 64(5): e00027-20. |
| [125] | Crass RL, Cojutti PG, Pai MP, et al. Reappraisal of linezolid dosing in renal impairment to improve safety[J]. Antimicrob Agents Chemother, 2019, 63(8): e00605-19. |
| [126] |
Shi C, Xia J, Ye J, et al. Effect of renal function on the risk of thrombocytopaenia in patients receiving linezolid therapy: a systematic review and meta-analysis[J]. Br J Clin Pharmacol, 2022, 88(2): 464-475.
doi: 10.1111/bcp.v88.2 |
| [127] |
Kawasuji H, Tsuji Y, Ogami C, et al. Proposal of initial and maintenance dosing regimens with linezolid for renal impairment patients[J]. BMC Pharmacol Toxicol, 2021, 22(1): 13.
doi: 10.1186/s40360-021-00479-w |
| [128] | Yang M, Zhao L, Wang X, et al. Population pharmaco-kinetics and dosage optimization of linezolid in critically ill pediatric patients[J]. Antimicrob Agents Chemother, 2021, 65(5): e02504-20. |
| [129] |
Luque S, Munoz-Bermudez R, Echeverria-Esnal D, et al. Linezolid dosing in patients with liver cirrhosis: standard dosing risk toxicity[J]. Ther Drug Monit, 2019, 41(6): 732-739.
doi: 10.1097/FTD.0000000000000665 pmid: 31259884 |
| [130] |
Sasaki T, Takane H, Ogawa K, et al. Population phar-macokinetic and pharmacodynamic analysis of linezolid and a hematologic side effect, thrombocytopenia, in Japanese patients[J]. Antimicrob Agents Chemother, 2011, 55(5): 1867-1873.
doi: 10.1128/AAC.01185-10 |
| [131] |
Sazdanovic P, Jankovic SM, Kostic M, et al. Pharmaco-kinetics of linezolid in critically ill patients[J]. Expert Opin Drug Metab Toxicol, 2016, 12(6): 595-600.
doi: 10.1517/17425255.2016.1170807 |
| [132] | Zhang SH, Zhu ZY, Chen Z, et al. Population pharmaco-kinetics and dosage optimization of linezolid in patients with liver dysfunction[J]. Antimicrob Agents Chemother, 2020, 64(6): e00133-20. |
| [133] |
Fiaccadori E, Maggiore U, Rotelli C, et al. Removal of linezolid by conventional intermittent hemodialysis, sustained low-efficiency dialysis, or continuous venovenous hemofiltration in patients with acute renal failure[J]. Crit Care Med, 2004, 32(12): 2437-2442.
doi: 10.1097/01.ccm.0000147687.06808.92 pmid: 15599148 |
| [134] |
Fiaccadori E, Maggiore U, Rotelli C, et al. Does haemo-dialysis significantly affect serum linezolid concentrations in critically ill patients with renal failure? A pilot investigation[J]. Nephrol Dial Transplant, 2006, 21(5): 1402-1406.
doi: 10.1093/ndt/gfl048 |
| [135] |
Roger C, Muller L, Wallis SC, et al. Population pharma-cokinetics of linezolid in critically ill patients on renal replacement therapy: comparison of equal doses in continuous venovenous haemofiltration and continuous venovenous haemodiafiltration[J]. J Antimicrob Chemother, 2016, 71(2): 464-470.
doi: 10.1093/jac/dkv349 pmid: 26538503 |
| [136] |
Soraluce A, Barrasa H, Asin-Prieto E, et al. Novel population pharmacokinetic model for linezolid in critically ill patients and evaluation of the adequacy of the current dosing recommendation[J]. Pharmaceutics, 2020, 12(1): 54.
doi: 10.3390/pharmaceutics12010054 |
| [137] |
Villa G, Di Maggio P, De Gaudio AR, et al. Effects of continuous renal replacement therapy on linezolid pharmacokinetic/pharmacodynamics: a systematic review[J]. Crit Care, 2016, 20(1): 374.
doi: 10.1186/s13054-016-1551-7 |
| [138] |
Kuhn D, Metz C, Seiler F, et al. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: a prospective, observational single-center study[J]. Crit Care, 2020, 24(1): 664.
doi: 10.1186/s13054-020-03397-1 |
| [139] |
De Rosa FG, Corcione S, Baietto L, et al. Pharmacokinetics of linezolid during extracorporeal membrane oxygenation[J]. Int J Antimicrob Agents, 2013, 41(6): 590-591.
doi: 10.1016/j.ijantimicag.2013.01.016 |
| [140] |
Nikolos P, Osorio J, Mohrien K, et al. Pharmacokinetics of linezolid for methicillin-resistant Staphylococcus aureus pneumonia in an adult receiving extracorporeal membrane oxygenation[J]. Am J Health Syst Pharm, 2020, 77(11): 877-881.
doi: 10.1093/ajhp/zxaa066 |
| [1] | CHEN Dan, REN Jiaying, SUN Lifang, WEI Zhenghu, SUN Xiaomin. Clinical features and prognosis of severe Mycoplasma pneumoniae pneumonia combined with intracardiac thrombus in children: a single-center retrospective study [J]. Journal of Clinical Pediatrics, 2026, 44(1): 17-24. |
| [2] | LIU Min, WANG Qi, SU Jun, CUI Lidan, SUN Huixia, NING Wenhui. Clinical features, diagnosis, and treatment of Mycoplasma pneumoniae pneumonia secondary to infective endocarditis in children [J]. Journal of Clinical Pediatrics, 2026, 44(1): 25-30. |
| [3] | JIA Ru, MA Yan, YU Qun, LIU Haiping, LIU Ping. An analysis of influenza vaccine coverage and influencing factors among children under 16 years old in two suburban districts of Shanghai [J]. Journal of Clinical Pediatrics, 2026, 44(1): 31-37. |
| [4] | WU Jinjun, XIONG Hao, ZENG Hui, CHEN Zhi, YANG Li, SUN Ming, WANG Zhuo, DU Yu, QI Shanshan, WANG Wei, ZHANG Lannan. Clinical analysis of allogeneic hematopoietic stem cell transplantation on pediatric myeloid sarcoma [J]. Journal of Clinical Pediatrics, 2026, 44(1): 44-50. |
| [5] | LIANG Zhiru, GUO Linmei, WANG Fei, ZHAO Xiaoyun. Lupus enteritis or inflammatory bowel disease: a report of the diagnosis and treatment of systemic lupus erythematosus complicated with gastrointestinal symptoms [J]. Journal of Clinical Pediatrics, 2026, 44(1): 56-63. |
| [6] | ZHOU Yuanke, SUN Lina, FANG Ying. Research progress on the role of zinc in the occurrence, development and treatment of inflammatory bowel disease in children [J]. Journal of Clinical Pediatrics, 2026, 44(1): 64-70. |
| [7] | ZHANG Wenting, FENG Juan. Progress in pediatric Takotsubo syndrome [J]. Journal of Clinical Pediatrics, 2026, 44(1): 79-83. |
| [8] | ZHANG Wei, WANG Yang, DENG Wenhua, WU Yabin. Analysis of clinical manifestations, ciliary structure and genetic characteristics of primary ciliary dyskinesia in 14 children [J]. Journal of Clinical Pediatrics, 2025, 43(9): 680-685. |
| [9] | XIANG Linjuan, CHEN Xuexin, JIA Yanhui, WU Yuhang, CONG Xin, LI Wei, CHEN Yingying, CHEN Sun, HUANG Lisu. Prognostic factors analysis of adenovirus type 3 pneumonia in children [J]. Journal of Clinical Pediatrics, 2025, 43(9): 686-691. |
| [10] | WANG Jie, WU Bin, ZHANG Lannan, CHEN Kailan. Two cases of pediatric hepatosplenic T-cell lymphoma and literature review [J]. Journal of Clinical Pediatrics, 2025, 43(9): 698-704. |
| [11] | YE Zehui, JIANG Xiaoli. A case report of sirolimus in the treatment of diffuse pulmonary lymphangiomatosis in children [J]. Journal of Clinical Pediatrics, 2025, 43(9): 705-709. |
| [12] | DONG Suzhen, CHEN Hao, ZHANG Zhiyong, JIANG Fan. Applications of low field MRI in pediatrics and prenatal fetal diagnosis [J]. Journal of Clinical Pediatrics, 2025, 43(9): 710-715. |
| [13] | SHI Xiaosong, FU Shijie, HE Xiaohua, LYU Hui, CHEN Houyang, CHEN Maolin, CHEN Jie. Antigenic genotypic characteristics and antibiotic resistance analysis of Bordetella pertussis in two regions of Fujian province [J]. Journal of Clinical Pediatrics, 2025, 43(8): 575-582. |
| [14] | PEI Pei, LI Weihua, HUAI Wan, YAO Ruen, GE Hejia, WANG Jiwen, WANG Xiumin, JI Wei, ZHOU Yunqing, HE Yingzhong, HAN Feng. Genetic and clinical characteristics analysis of 10 children with ATP1A2/ATP1A3 gene variants [J]. Journal of Clinical Pediatrics, 2025, 43(8): 590-597. |
| [15] | LI Heting, SUN Ruidi, JIANG Jun. Clinical features, prognosis and neurophysiological characteristics of children with acute anti-GQ1b antibody syndrome [J]. Journal of Clinical Pediatrics, 2025, 43(8): 604-609. |
|
||