Journal of Clinical Pediatrics ›› 2026, Vol. 44 ›› Issue (1): 64-70.doi: 10.12372/jcp.2026.25e0166
• Literature Review • Previous Articles Next Articles
ZHOU Yuanke1,2, SUN Lina2, FANG Ying2(
)
Received:2025-02-27
Accepted:2025-05-28
Published:2026-01-15
Online:2026-01-05
CLC Number:
ZHOU Yuanke, SUN Lina, FANG Ying. Research progress on the role of zinc in the occurrence, development and treatment of inflammatory bowel disease in children[J].Journal of Clinical Pediatrics, 2026, 44(1): 64-70.
| [1] | 贾双珍, 孔琰, 刘前超, 等. 儿童炎症性肠病的精准治疗研究与应用[J]. 临床儿科杂志, 2025, 43(3): 226-232. |
| Jia SZ, Kong Y, Liu QC, et al. Application of precision therapy in pediatric inflammatory bowel disease[J]. Linchuang Erke Zazhi, 2025, 43(3): 226-232. | |
| [2] | 吴捷, 张添卓. 儿童炎症性肠病的研究现状及展望[J]. 临床儿科杂志, 2023, 41(11): 801-807. |
| Wu J, Zhang TZ. An analysis of the present status and future prospects of pediatric inflammatory bowel disease[J]. Linchuang Erke Zazhi, 2023, 41(11): 801-807. | |
| [3] |
Long D, Wang C, Huang Y, et al. Changing epidemiology of inflammatory bowel disease in children and adolescents[J]. Int J Colorectal Dis, 2024, 39(1): 73.
doi: 10.1007/s00384-024-04640-9 pmid: 38760622 |
| [4] |
Khan R, Kuenzig ME, Benchimol EI. Epidemiology of pediatric inflammatory bowel disease[J]. Gastroenterol Clin North Am, 2023, 52(3): 483-496.
doi: 10.1016/j.gtc.2023.05.001 |
| [5] |
Kuenzig ME, Fung SG, Marderfeld L, et al. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: systematic review[J]. Gastroenterology, 2022, 162(4): 1147-1159.
doi: 10.1053/j.gastro.2021.12.282 pmid: 34995526 |
| [6] |
Zupo R, Sila A, Castellana F, et al. Prevalence of zinc deficiency in inflammatory bowel disease: a systematic review and meta-analysis[J]. Nutrients, 2022, 14(19): 4052.
doi: 10.3390/nu14194052 |
| [7] |
Peng X, Yang Y, Zhong R, et al. Zinc and inflammatory bowel disease: from clinical study to animal experiment[J]. Biol Trace Elem Res, 2025, 203(2): 624-634.
doi: 10.1007/s12011-024-04193-6 |
| [8] |
Wan Y, Zhang B. The impact of zinc and zinc homeostasis on the intestinal mucosal barrier and intestinal diseases[J]. Biomolecules, 2022, 12(7): 900.
doi: 10.3390/biom12070900 |
| [9] |
Hennigar SR, McClung JP. Zinc transport in the mammalian intestine[J]. Compr Physiol, 2018, 9(1): 59-74.
doi: 10.1002/cphy.c180001 pmid: 30549025 |
| [10] |
Cheng J, Kolba N, Tako E. The effect of dietary zinc and zinc physiological status on the composition of the gut microbiome in vivo[J]. Crit Rev Food Sci Nutr, 2024, 64(18): 6432-6451.
doi: 10.1080/10408398.2023.2169857 |
| [11] |
Costa MI, Sarmento-Ribeiro AB, Gonçalves AC. Zinc: from biological functions to therapeutic potential[J]. Int J Mol Sci, 2023, 24(5): 4822.
doi: 10.3390/ijms24054822 |
| [12] |
Chao HC. Zinc deficiency and therapeutic value of zinc supplementation in pediatric gastrointestinal diseases[J]. Nutrients, 2023, 15(19): 4093.
doi: 10.3390/nu15194093 |
| [13] |
Rezazadegan M, Soheilipour M, Tarrahi MJ, et al. Correlation between zinc nutritional status with serum zonulin and gastrointestinal symptoms in diarrhea-predominant irritable bowel syndrome: a case-control study[J]. Dig Dis Sci, 2022, 67(8): 3632-3638.
doi: 10.1007/s10620-021-07368-6 |
| [14] |
Wang J, Zhao H, Xu Z, et al. Zinc dysregulation in cancers and its potential as a therapeutic target[J]. Cancer Biol Med, 2020, 17(3): 612-625.
doi: 10.20892/j.issn.2095-3941.2020.0106 pmid: 32944394 |
| [15] | Ohashi W, Fukada T. Contribution of zinc and zinc transporters in the pathogenesis of inflammatory bowel diseases[J]. J Immunol Res, 2019, 2019: 8396878. |
| [16] | Mitchell SB, Thorn TL, Lee MT, et al. Metal transporter SLC39A14/ZIP14 modulates regulation between the gut microbiome and host metabolism[J]. Am J Physiol Gastrointest Liver Physiol, 2023, 325(6): G593-G607. |
| [17] |
Govindarasu M, Vaiyapuri M, Kim JC. Protective effect of zinc oxide nanoparticles synthesized using Cassia alata for DSS-induced ulcerative colitis in mice model[J]. Bioprocess Biosyst Eng, 2024, 47(8): 1393-1407.
doi: 10.1007/s00449-024-03047-8 |
| [18] |
Lahiri A, Abraham C. Activation of pattern recognition receptors up-regulates metallothioneins, thereby increasing intracellular accumulation of zinc, autophagy, and bacterial clearance by macrophages[J]. Gastroenterology, 2014, 147(4): 835-846.
doi: 10.1053/j.gastro.2014.06.024 pmid: 24960189 |
| [19] |
Kido T, Ishiwata K, Suka M, et al. Inflammatory response under zinc deficiency is exacerbated by dysfunction of the T helper type 2 lymphocyte-M2 macrophage pathway[J]. Immunology, 2019, 156(4): 356-372.
doi: 10.1111/imm.13033 pmid: 30552817 |
| [20] |
Vaghari-Tabari M, Jafari-Gharabaghlou D, Sadeghsoltani F, et al. Zinc and selenium in inflammatory bowel disease: trace elements with key roles?[J]. Biol Trace Elem Res, 2021, 199(9): 3190-3204.
doi: 10.1007/s12011-020-02444-w pmid: 33098076 |
| [21] |
Wen C, Wang J, Sun Z, et al. Dietary zinc ameliorates TNBS-induced colitis in mice associated with regulation of Th1/Th2/Th17 balance and NF-κB/NLRP3 signaling pathway[J]. Biol Trace Elem Res, 2024, 202(2): 659-670.
doi: 10.1007/s12011-023-03715-y |
| [22] |
Li J, Chen H, Wang B, et al. ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling[J]. Sci Rep, 2017, 7: 43126.
doi: 10.1038/srep43126 pmid: 28233796 |
| [23] |
Shao Y, Wolf PG, Guo S, et al. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells[J]. J Nutr Biochem, 2017, 43: 18-26.
doi: S0955-2863(16)30545-9 pmid: 28193579 |
| [24] |
Jarmakiewicz-Czaja S, Ferenc K, Sokal-Dembowska A, et al. Nutritional support: the use of antioxidants in inflammatory bowel disease[J]. Int J Mol Sci, 2024, 25(8): 4390.
doi: 10.3390/ijms25084390 |
| [25] |
Zhang C, Li Q, Xing J, et al. Tannic acid and zinc ion coordination of nanase for the treatment of inflammatory bowel disease by promoting mucosal repair and removing reactive oxygen and nitrogen species[J]. Acta Biomater, 2024, 177: 347-360.
doi: 10.1016/j.actbio.2024.02.015 pmid: 38373525 |
| [26] |
Wu W, Liu L, Zhu Y, et al. Zinc-rutin particles ameliorate DSS-induced acute and chronic colitis via anti-inflammatory and antioxidant protection of the intestinal epithelial barrier[J]. J Agric Food Chem, 2023, 71(34): 12715-12729.
doi: 10.1021/acs.jafc.3c03195 |
| [27] |
Ishihara J, Arai K, Kudo T, et al. Serum zinc and selenium in children with inflammatory bowel disease: a multicenter study in Japan[J]. Dig Dis Sci, 2022, 67(6): 2485-2491.
doi: 10.1007/s10620-021-07078-z |
| [28] |
El Koofy NM, Moawad EMI, Yassin NA, et al. Basic anthropometry, micronutrients status and growth velocity of patients with early-onset inflammatory bowel disease: a prospective cohort study[J]. Arab J Gastroenterol, 2022, 23(4): 270-276.
doi: 10.1016/j.ajg.2022.06.004 pmid: 35918289 |
| [29] |
Ehrlich S, Mark AG, Rinawi F, et al. Micronutrient deficiencies in children with inflammatory bowel diseases[J]. Nutr Clin Pract, 2020, 35(2): 315-322.
doi: 10.1002/ncp.10373 pmid: 31342601 |
| [30] |
Brownson E, Saunders J, Jatkowska A, et al. Micronutrient status and prediction of disease outcome in adults with inflammatory bowel disease receiving biologic therapy[J]. Inflamm Bowel Dis, 2024, 30(8): 1233-1240.
doi: 10.1093/ibd/izad174 |
| [31] |
Fritz J, Walia C, Elkadri A, et al. A systematic review of micronutrient deficiencies in pediatric inflammatory bowel disease[J]. Inflamm Bowel Dis, 2019, 25(3): 445-459.
doi: 10.1093/ibd/izy271 pmid: 30137322 |
| [32] |
Vasseur P, Dugelay E, Benamouzig R, et al. Dietary zinc intake and inflammatory bowel disease in the French NutriNet-Santé cohort[J]. Am J Gastroenterol, 2020, 115(8): 1293-1297.
doi: 10.14309/ajg.0000000000000688 pmid: 32467505 |
| [33] |
Salavatizadeh M, Soltanieh S, Chegini M, et al. Micronutrient intake and risk of ulcerative colitis: a meta-analysis of observational studies[J]. Clin Nutr ESPEN, 2022, 51: 152-159.
doi: 10.1016/j.clnesp.2022.07.008 pmid: 36184199 |
| [34] |
Siva S, Rubin DT, Gulotta G, et al. Zinc deficiency is associated with poor clinical outcomes in patients with inflammatory bowel disease[J]. Inflamm Bowel Dis, 2017, 23(1): 152-157.
doi: 10.1097/MIB.0000000000000989 pmid: 27930412 |
| [35] |
Stochel-Gaudyn A, Fyderek K, Kościelniak P. Serum trace elements profile in the pediatric inflammatory bowel disease progress evaluation[J]. J Trace Elem Med Biol, 2019, 55: 121-126.
doi: S0946-672X(18)30675-8 pmid: 31345349 |
| [36] |
Sakurai K, Furukawa S, Katsurada T, et al. Effectiveness of administering zinc acetate hydrate to patients with inflammatory bowel disease and zinc deficiency: a retrospective observational two-center study[J]. Intest Res, 2022, 20(1): 78-89.
doi: 10.5217/ir.2020.00124 |
| [37] |
Miyaguchi K, Tsuzuki Y, Ichikawa Y, et al. Positive zinc intake and a Japanese diet rich in n-3 fatty acids induces clinical remission in patients with mild active ulcerative colitis: a randomized interventional pilot study[J]. J Clin Biochem Nutr, 2023, 72(1): 82-88.
doi: 10.3164/jcbn.22-72 pmid: 36777083 |
| [38] |
Keshteli AH, Valcheva R, Nickurak C, et al. Anti-inflammatory diet prevents subclinical colonic inflammation and alters metabolomic profile of ulcerative colitis patients in clinical remission[J]. Nutrients, 2022, 14(16): 3294.
doi: 10.3390/nu14163294 |
| [39] | Dragasevic S, Stankovic B, Kotur N, et al. Genetic aspects of micronutrients important for inflammatory bowel disease[J]. Life (Basel), 2022, 12(10): 1623. |
| [40] | 国家卫生健康委员会, 国家中医药管理局. 儿童急性感染性腹泻病诊疗规范(2020年版)[J]. 传染病信息, 2021, 34(1): 7-14. |
| National Health Commission of the People's Republic of China, National Administration of Traditional Chinese Medicine. Guidelines for the diagnosis and treatment of acute infectious diarrhea in children (2020 edition)[J]. Chuanranbing Xinxi, 2021, 34(1): 7-14. | |
| [41] | 儿童锌缺乏症临床防治专家共识编写专家组, 中国研究型医院学会儿科学专业委员会. 儿童锌缺乏症临床防治专家共识[J]. 儿科药学杂志, 2020, 26(3): 46-50. |
| Expert Group for the Development of the Clinical Prevention and Treatment Consensus on Zinc Deficiency in Children, Pediatrics Committee of Chinese Research Hospital Association. Expert consensus on clinical prevention and treatment of zinc deficiency in children[J]. Erke Yaoxue Zazhi, 2020, 26(3): 46-50. |
| [1] | Subspecialty Pediatric Consensus Collaborative Group, Subspecialty Group of Infectious Diseases, Society of Pediatric, Chinese Medical Association, Subspecialty Group of Infectious Diseases, Society of Pediatric, Zhejiang Medical Association, National Clinical Research Center for Children and Adolescents' Health and Diseases. Expert consensus on the clinical application and individualized therapy of oxazolidinone antibiotics in children [J]. Journal of Clinical Pediatrics, 2026, 44(1): 1-16. |
| [2] | CHEN Dan, REN Jiaying, SUN Lifang, WEI Zhenghu, SUN Xiaomin. Clinical features and prognosis of severe Mycoplasma pneumoniae pneumonia combined with intracardiac thrombus in children: a single-center retrospective study [J]. Journal of Clinical Pediatrics, 2026, 44(1): 17-24. |
| [3] | LIU Min, WANG Qi, SU Jun, CUI Lidan, SUN Huixia, NING Wenhui. Clinical features, diagnosis, and treatment of Mycoplasma pneumoniae pneumonia secondary to infective endocarditis in children [J]. Journal of Clinical Pediatrics, 2026, 44(1): 25-30. |
| [4] | JIA Ru, MA Yan, YU Qun, LIU Haiping, LIU Ping. An analysis of influenza vaccine coverage and influencing factors among children under 16 years old in two suburban districts of Shanghai [J]. Journal of Clinical Pediatrics, 2026, 44(1): 31-37. |
| [5] | WU Jinjun, XIONG Hao, ZENG Hui, CHEN Zhi, YANG Li, SUN Ming, WANG Zhuo, DU Yu, QI Shanshan, WANG Wei, ZHANG Lannan. Clinical analysis of allogeneic hematopoietic stem cell transplantation on pediatric myeloid sarcoma [J]. Journal of Clinical Pediatrics, 2026, 44(1): 44-50. |
| [6] | LIANG Zhiru, GUO Linmei, WANG Fei, ZHAO Xiaoyun. Lupus enteritis or inflammatory bowel disease: a report of the diagnosis and treatment of systemic lupus erythematosus complicated with gastrointestinal symptoms [J]. Journal of Clinical Pediatrics, 2026, 44(1): 56-63. |
| [7] | ZHANG Wenting, FENG Juan. Progress in pediatric Takotsubo syndrome [J]. Journal of Clinical Pediatrics, 2026, 44(1): 79-83. |
| [8] | ZHANG Wei, WANG Yang, DENG Wenhua, WU Yabin. Analysis of clinical manifestations, ciliary structure and genetic characteristics of primary ciliary dyskinesia in 14 children [J]. Journal of Clinical Pediatrics, 2025, 43(9): 680-685. |
| [9] | XIANG Linjuan, CHEN Xuexin, JIA Yanhui, WU Yuhang, CONG Xin, LI Wei, CHEN Yingying, CHEN Sun, HUANG Lisu. Prognostic factors analysis of adenovirus type 3 pneumonia in children [J]. Journal of Clinical Pediatrics, 2025, 43(9): 686-691. |
| [10] | WANG Jie, WU Bin, ZHANG Lannan, CHEN Kailan. Two cases of pediatric hepatosplenic T-cell lymphoma and literature review [J]. Journal of Clinical Pediatrics, 2025, 43(9): 698-704. |
| [11] | YE Zehui, JIANG Xiaoli. A case report of sirolimus in the treatment of diffuse pulmonary lymphangiomatosis in children [J]. Journal of Clinical Pediatrics, 2025, 43(9): 705-709. |
| [12] | DONG Suzhen, CHEN Hao, ZHANG Zhiyong, JIANG Fan. Applications of low field MRI in pediatrics and prenatal fetal diagnosis [J]. Journal of Clinical Pediatrics, 2025, 43(9): 710-715. |
| [13] | ZHOU Zhixuan, WANG Ying. Application progress of glucagon-like peptide-2 analogues in inflammatory bowel disease [J]. Journal of Clinical Pediatrics, 2025, 43(9): 716-722. |
| [14] | SHI Xiaosong, FU Shijie, HE Xiaohua, LYU Hui, CHEN Houyang, CHEN Maolin, CHEN Jie. Antigenic genotypic characteristics and antibiotic resistance analysis of Bordetella pertussis in two regions of Fujian province [J]. Journal of Clinical Pediatrics, 2025, 43(8): 575-582. |
| [15] | PEI Pei, LI Weihua, HUAI Wan, YAO Ruen, GE Hejia, WANG Jiwen, WANG Xiumin, JI Wei, ZHOU Yunqing, HE Yingzhong, HAN Feng. Genetic and clinical characteristics analysis of 10 children with ATP1A2/ATP1A3 gene variants [J]. Journal of Clinical Pediatrics, 2025, 43(8): 590-597. |
|
||