Journal of Clinical Pediatrics ›› 2025, Vol. 43 ›› Issue (9): 716-722.doi: 10.12372/jcp.2025.24e1343
• Literature Review • Previous Articles
Received:
2024-12-12
Accepted:
2025-02-06
Published:
2025-09-15
Online:
2025-08-27
CLC Number:
ZHOU Zhixuan, WANG Ying. Application progress of glucagon-like peptide-2 analogues in inflammatory bowel disease[J].Journal of Clinical Pediatrics, 2025, 43(9): 716-722.
[1] |
Rosen MJ, Dhawan A, Saeed SA. Inflammatory bowel disease in children and adolescents[J]. JAMA Pediatr, 2015, 169(11): 1053-1060.
doi: 10.1001/jamapediatrics.2015.1982 pmid: 26414706 |
[2] |
Flynn S, Eisenstein S. Inflammatory bowel disease presentation and diagnosis[J]. Surg Clin North Am, 2019, 99(6): 1051-1062.
doi: S0039-6109(19)30090-8 pmid: 31676047 |
[3] |
Ramos GP, Papadakis KA. Mechanisms of disease: inflammatory bowel diseases[J]. Mayo Clin Proc, 2019, 94(1): 155-165.
doi: S0025-6196(18)30751-1 pmid: 30611442 |
[4] | Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis[J]. World J Gastroenterol, 2014, 20(1): 91-99. |
[5] |
Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease[J]. Clin J Gastroenterol, 2018, 11(1): 1-10.
doi: 10.1007/s12328-017-0813-5 pmid: 29285689 |
[6] | N MN, Bourke A, Subramanian S. Review article: novel therapies in inflammatory bowel disease - an update for clinicians[J]. Aliment Pharmacol Ther, 2024, 60(9): 1244-1260. |
[7] |
Drucker DJ, Yusta B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2[J]. Annu Rev Physiol, 2014, 76: 561-583.
doi: 10.1146/annurev-physiol-021113-170317 pmid: 24161075 |
[8] |
Burness CB, Mccormack PL. Teduglutide: a review of its use in the treatment of patients with short bowel syndrome[J]. Drugs, 2013, 73(9): 935-947.
doi: 10.1007/s40265-013-0070-y pmid: 23729002 |
[9] |
Estall JL, Drucker DJ. Glucagon-like peptide-2[J]. Annu Rev Nutr, 2006, 26: 391-411.
pmid: 16602931 |
[10] |
Drucker DJ, Shi Q, Crivici A, et al. Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV[J]. Nat Biotechnol, 1997, 15(7): 673-677.
pmid: 9219272 |
[11] |
Kocoshis SA, Merritt RJ, Hill S, et al. Safety and efficacy of teduglutide in pediatric patients with intestinal failure due to short bowel syndrome: a 24-week, phase III study[J]. JPEN J Parenter Enteral Nutr, 2020, 44(4): 621-631.
doi: 10.1002/jpen.1690 pmid: 31495952 |
[12] |
Hargrove DM, Alagarsamy S, Croston G, et al. Pharmacological characterization of apraglutide, a novel long-acting peptidic glucagon-like peptide-2 agonist, for the treatment of short bowel syndrome[J]. J Pharmacol Exp Ther, 2020, 373(2): 193-203.
doi: 10.1124/jpet.119.262238 pmid: 32075870 |
[13] |
Bolognani F, Kruithof AC, Schulthess P, et al. Characterization of the pharmacokinetic and pharmaco-dynamic profile of apraglutide, a glucagon-like peptide-2 analog, in healthy volunteers[J]. J Pharmacol Exp Ther, 2023, 386(2): 129-137.
doi: 10.1124/jpet.123.001582 pmid: 37316329 |
[14] | Pironi L. Intestinal adaptation and rehabilitation in adults with short bowel syndrome[J]. Curr Opin Clin Nutr Metab Care, 2024, 27(5): 457-461. |
[15] | Eliasson J, Hvistendahl MK, Freund N, et al. Apraglutide, a novel glucagon-like peptide-2 analog, improves fluid absorption in patients with short bowel syndrome intestinal failure: Findings from a placebo-controlled, randomized phase 2 trial[J]. JPEN J Parenter Enteral Nutr, 2022, 46(4): 896-904. |
[16] | Naimi RM, Hvistendahl M, Enevoldsen LH, et al. Glepaglutide, a novel long-acting glucagon-like peptide-2 analogue, for patients with short bowel syndrome: a randomised phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2019, 4(5): 354-363. |
[17] |
Austin K, Markovic MA, Brubaker PL. Current and potential therapeutic targets of glucagon-like peptide-2[J]. Curr Opin Pharmacol, 2016, 31: 13-18.
doi: S1471-4892(16)30093-5 pmid: 27580097 |
[18] |
Dong CX, Zhao W, Solomon C, et al. The intestinal epithelial insulin-like growth factor-1 receptor links glucagon-like peptide-2 action to gut barrier function[J]. Endocrinology, 2014, 155(2): 370-379.
doi: 10.1210/en.2013-1871 pmid: 24265452 |
[19] | El-Jamal N, Erdual E, Neunlist M, et al. Glugacon-like peptide-2: broad receptor expression, limited therapeutic effect on intestinal inflammation and novel role in liver regeneration[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307(3): G274- G285. |
[20] | Liu H, Xiao H, Lin S, et al. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis[J]. Front Pharmacol, 2024, 15: 1372399. |
[21] |
Yusta B, Matthews D, Koehler JA, et al. Localization of glucagon-like peptide-2 receptor expression in the mouse[J]. Endocrinology, 2019, 160(8): 1950-1963.
doi: 10.1210/en.2019-00398 pmid: 31237617 |
[22] |
Guan X, Karpen HE, Stephens J, et al. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow[J]. Gastroenterology, 2006, 130(1): 150-164.
doi: 10.1053/j.gastro.2005.11.005 pmid: 16401478 |
[23] |
Pedersen J, Pedersen NB, Brix SW, et al. The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine[J]. Peptides, 2015, 67: 20-28.
doi: 10.1016/j.peptides.2015.02.007 pmid: 25748021 |
[24] | Morrow NM, Hanson AA, Mulvihill EE. Distinct identity of GLP-1R, GLP-2R, and GIPR expressing cells and signaling circuits within the gastrointestinal tract[J]. Front Cell Dev Biol, 2021, 9: 703966. |
[25] | Drucker DJ, Yusta B, Boushey RP, et al. Human [Gly2] GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis[J]. Am J Physiol, 1999, 276(1): G79-G91. |
[26] | L'heureux MC, Brubaker PL. Glucagon-like peptide-2 and common therapeutics in a murine model of ulcerative colitis[J]. J Pharmacol Exp Ther, 2003, 306(1): 347-354. |
[27] |
Alavi K, Schwartz MZ, Palazzo JP, et al. Treatment of inflammatory bowel disease in a rodent model with the intestinal growth factor glucagon-like peptide-2[J]. J Pediatr Surg, 2000, 35(6): 847-851.
doi: 10.1053/jpsu.2000.6861 pmid: 10873024 |
[28] | Sigalet DL, Wallace LE, Holst JJ, et al. Enteric neural pathways mediate the anti-inflammatory actions of glucagon-like peptide 2[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 293(1): G211- G221. |
[29] | Ivory CP, Wallace LE, Mccafferty DM, et al. Interleukin-10-independent anti-inflammatory actions of glucagon-like peptide 2[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 295(6): G1202- G1210. |
[30] |
Wu J, Qi K, Xu Z, et al. Glucagon-like peptide-2-loaded microspheres as treatment for ulcerative colitis in the murine model[J]. J Microencapsul, 2015, 32(6): 598-607.
doi: 10.3109/02652048.2015.1065923 pmid: 26218715 |
[31] | Arab HH, Eid AH, Mahmoud AM, et al. Linagliptin mitigates experimental inflammatory bowel disease in rats by targeting inflammatory and redox signaling[J]. Life Sci, 2021, 273: 119295. |
[32] | Li D, Gao Y, Cui L, et al. Integrative analysis revealed the role of glucagon-like peptide-2 in improving experimental colitis in mice by inhibiting inflammatory pathways, regulating glucose metabolism, and modulating gut microbiota[J]. Front Microbiol, 2023, 14: 1174308. |
[33] |
Gu J, Liu J, Huang T, et al. The protective and anti-inflammatory effects of a modified glucagon-like peptide-2 dimer in inflammatory bowel disease[J]. Biochem Pharmacol, 2018, 155: 425-433.
doi: S0006-2952(18)30295-8 pmid: 30040929 |
[34] | Qi KK, Lv JJ, Wu J, et al. Therapeutic effects of different doses of polyethylene glycosylated porcine glucagon-like peptide-2 on ulcerative colitis in male rats[J]. BMC Gastroenterol, 2017, 17(1): 34. |
[35] | Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease[J]. Nature, 2007, 448(7152): 427-434. |
[36] | Mousa WK, Al Ali A. The gut microbiome advances precision medicine and diagnostics for inflammatory bowel diseases[J]. Int J Mol Sci, 2024, 25(20):11259. |
[37] | Alters SE, Mclaughlin B, Spink B, et al. GLP2-2G-XTEN: a pharmaceutical protein with improved serum half-life and efficacy in a rat Crohn's disease model[J]. PLoS One, 2012, 7(11): e50630. |
[38] | Yang PY, Zou H, Lee C, et al. Stapled, long-acting glucagon-like peptide 2 analog with efficacy in dextran sodium sulfate induced mouse colitis models[J]. J Med Chem, 2018, 61(7): 3218-3223. |
[39] | Ning MM, Yang WJ, Guan WB, et al. Dipeptidyl peptidase 4 inhibitor sitagliptin protected against dextran sulfate sodium-induced experimental colitis by potentiating the action of GLP-2[J]. Acta Pharmacol Sin, 2020, 41(11): 1446-1456. |
[40] | Han F, Ning M, Wang K, et al. Design and exploration of gut-restricted bifunctional molecule with TGR5 agonistic and DPP4 inhibitory effects for treating ulcerative colitis[J]. Eur J Med Chem, 2022, 242: 114697. |
[41] |
Marotti V, Xu Y, Bohns Michalowski C, et al. A nanoparticle platform for combined mucosal healing and immunomodulation in inflammatory bowel disease treatment[J]. Bioact Mater, 2024, 32: 206-221.
doi: 10.1016/j.bioactmat.2023.09.014 pmid: 37859689 |
[42] | Barros AS, Pinto S, Viegas J, et al. Orally delivered stimulus-sensitive nanomedicine to harness teduglutide efficacy in inflammatory bowel disease[J]. Small, 2024: e2402502. |
[43] | Borghini R, Caronna R, Donato G, et al. GLP-2 analog teduglutide in active Crohn's disease and short bowel syndrome: confirmation of anti-inflammatory role and future perspectives[J]. Dig Liver Dis, 2020, 52(6): 686-687. |
[44] |
Al Draiweesh S, Ma C, Gregor JC, et al. Teduglutide in patients with active Crohn's disease and short bowel syndrome[J]. Inflamm Bowel Dis, 2019, 25(9): e109.
doi: 10.1093/ibd/izz087 |
[45] | George AT, Li BH, Carroll RE. Off-label teduglutide therapy in non-intestinal failure patients with chronic malabsorption[J]. Dig Dis Sci, 2019, 64(6): 1599-1603. |
[46] |
Borghini R, Caronna R, Picarelli A, et al. Results of 12-month rescue treatment with Teduglutide in severely active and parenteral nutrition-dependent Crohn's disease[J]. Turk J Gastroenterol, 2017, 28(1): 73-74.
doi: 10.5152/tjg.2016.0587 pmid: 27991856 |
[47] |
Buchman AL, Katz S, Fang JC, et al. Teduglutide, a novel mucosally active analog of glucagon-like peptide-2 (GLP-2) for the treatment of moderate to severe Crohn's disease[J]. Inflamm Bowel Dis, 2010, 16(6): 962-973.
doi: 10.1002/ibd.21117 pmid: 19821509 |
[48] | Sigalet DL, Kravarusic D, Butzner D, et al. A pilot study examining the relationship among Crohn disease activity, glucagon-like peptide-2 signalling and intestinal function in pediatric patients[J]. Can J Gastroenterol, 2013, 27(10): 587-592. |
[49] |
Li D, Yang Y, Yin X, et al. Glucagon-like peptide (GLP) -2 improved colonizing bacteria and reduced severity of ulcerative colitis by enhancing the diversity and abundance of intestinal mucosa[J]. Bioengineered, 2021, 12(1): 5195-5209.
doi: 10.1080/21655979.2021.1958600 pmid: 34402720 |
[50] | 吴捷, 张添卓. 儿童炎症性肠病的研究现状及展望[J]. 临床儿科杂志, 2023, 41(11): 801-807. |
WU Jie, ZHANG Tianzhuo. An analysis of the present status and future prospects of pediatric inflammatory bowel disease[J]. Linchuang Erke Zazhi, 2023, 41(11): 801-807 | |
[51] | 庄严, 黄瑞文. 极早发型炎症性肠病发病机制研究进展[J]. 临床儿科杂志, 2023, 41(7): 549-555. |
ZHUANG Yan, HUANG Ruiwen. Advances in the pathogenesis of very early onset inflammatory bowel disease[J]. Linchuang Erke Zazhi, 2023, 41(7): 549-555. |
[1] | JIA Shuangzhen, KONG Yan, LIU Qian-chao, ZHU Ailin, WU Jie. Application of precision therapy in pediatric inflammatory bowel disease [J]. Journal of Clinical Pediatrics, 2025, 43(3): 226-232. |
[2] | HUANG Liufang, WU Bo, WANG Ying. An analysis of predictive markers for surgical treatment of ulcerative colitis in children [J]. Journal of Clinical Pediatrics, 2025, 43(2): 120-127. |
[3] | ZHUANG Yan, HUANG Ruiwen. Advances in the pathogenesis of very early onset inflammatory bowel disease [J]. Journal of Clinical Pediatrics, 2023, 41(7): 549-555. |
[4] | XIA Yu, GE Wensong, DU Taozi, GONG Zizhen, XIAO Bing, LIANG Lili, WANG Ruifang, YANG Yi, QIU Wenjuan. Therapeutic efficacy of an SGLT2 inhibitor in five pediatric patients with glycogen storage disease type Ⅰb and inflammatory bowel disease [J]. Journal of Clinical Pediatrics, 2023, 41(4): 294-299. |
[5] | ZHENG Xinguo, YANG Hui. Analysis of clinical feature of 11 cases of very early-onset inflammatory bowel disease [J]. Journal of Clinical Pediatrics, 2023, 41(11): 815-819. |
[6] | WU Jie, ZHANG Tianzhuo. An analysis of the present status and future prospects of pediatric inflammatory bowel disease [J]. Journal of Clinical Pediatrics, 2023, 41(11): 801-807. |
[7] | WU Shiyin, CAI Meiqin. Advances in Bifidobacterium longum and intestinal health during infancy [J]. Journal of Clinical Pediatrics, 2022, 40(9): 715-720. |
[8] | SHEN Yiyi, LIAN Min, LI Mei, GUO Hongmei, ZHANG Zhihua, YAN Kunlong, LU Yan, JIN Yu, LIU Zhifeng. Retrospective analysis of the characteristics of colonoscopy in 86 infants [J]. Journal of Clinical Pediatrics, 2022, 40(11): 819-823. |
[9] | WANG Xinqiong, XU Chundi. Precision treatment in pediatric inflammatory bowel disease [J]. Journal of Clinical Pediatrics, 2022, 40(11): 813-818. |
[10] | MENG Yingying, WANG Yuhuan, TANG Zifei, et al. Crohn's disease complicated with Takayasu arteritis: a case report and literature review [J]. Journal of Clinical Pediatrics, 2021, 39(5): 360-. |
[11] | LIU Ting, XIE Yongwu, ZENG Ping, et al. Adolescent X-linked inhibitor of apoptosis deficiency: a case report and literature review [J]. Journal of Clinical Pediatrics, 2020, 38(3): 213-. |
[12] | . Neonatal inflammatory bowel disease: a report of 2 cases with literature review [J]. , 2018, 36(2): 121-. |
[13] | ZHENG Cuifang, HUANG Ying. The role of zinc finger protein A20 in immune regulation of dendritic cells and in the pathogenesis of inflammatory bowel disease [J]. , 2016, 34(6): 470-. |
[14] | ZHENG Cuifang. Advances in the enteral nutrition therapy in pediatric patients with Crohn’s disease [J]. , 2016, 34(4): 307-. |
[15] | YANG Hui, JIN Yu, LI Mei, HAO Lihua . Detection of biomarkers and its clinical significance in the inflammatory bowel disease in Children [J]. , 2016, 34(10): 721-. |
|