临床儿科杂志 ›› 2022, Vol. 40 ›› Issue (7): 481-487.doi: 10.12372/jcp.2022.22e0740
• 述评 • 下一篇
收稿日期:
2022-05-23
出版日期:
2022-07-15
发布日期:
2022-07-08
通讯作者:
黄敏
E-mail:huangmin@sjtu.edu.cn
基金资助:
Received:
2022-05-23
Published:
2022-07-15
Online:
2022-07-08
Contact:
HUANG Min
E-mail:huangmin@sjtu.edu.cn
摘要:
川崎病(Kawasaki disease,KD)是一种急性自身免疫性系统性血管炎,是发达国家儿童获得性心脏病的主要病因。KD最严重的后果是冠状动脉病变(coronary artery lesions,CALs),与KD的预后相关。临床研究证实静脉注射丙种球蛋白(IVIG)耐药是CALs的独立危险因素。近年来,一系列的预测模型已被开发来评估IVIG耐药的风险。然而,目前基于KD儿童人口学特征、临床表现、实验室检查及遗传特性的IVIG耐药性预测评分系统在不同民族和同一民族不同地区的人群中存在显著差异,尚未建立适用普遍人群的预测模型。
黄玉娟, 黄敏. 川崎病静脉注射丙种球蛋白无反应预测模型研究现状[J]. 临床儿科杂志, 2022, 40(7): 481-487.
HUANG Yujuan, HUANG Min. Research status of predictive model for IVIG resistance in Kawasaki disease[J]. Journal of Clinical Pediatrics, 2022, 40(7): 481-487.
[1] |
Burns JC, Glodé MP. Kawasaki syndrome[J]. Lancet, 2004, 364(9433): 533-544.
pmid: 15302199 |
[2] | McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the american heart association[J]. Circulation, 2017, 135(17): e927-e999. |
[3] |
Kobayashi T, Ayusawa M, Suzuki H, et al. Revision of diagnostic guidelines for Kawasaki disease (6th revised edition)[J]. Pediatr Int, 2020, 62(10): 1135-1138.
doi: 10.1111/ped.14326 |
[4] |
Kim GB, Park S, Eun LY, et al. Epidemiology and clinical features of Kawasaki Disease in South Korea, 2012-2014 [J]. Pediatr Infect Dis J, 2017, 36(5): 482-485.
doi: 10.1097/INF.0000000000001474 |
[5] |
Lue HC, Chen LR, Lin MT, et al. Estimation of the incidence of Kawasaki disease in Taiwan. A comparison of two data sources: nationwide hospital survey and national health insurance claims[J]. Pediatr Neonatol, 2014, 55(2): 97-100.
doi: 10.1016/j.pedneo.2013.05.011 |
[6] |
Makino N, Nakamura Y, Yashiro M, et al. Descriptive epidemiology of Kawasaki disease in Japan, 2011-2012: from the results of the 22nd nationwide survey[J]. J Epidemiol, 2015, 25(3): 239-245.
doi: 10.2188/jea.JE20140089 |
[7] |
Huang MY, Gupta-Malhotra M, Huang JJ, et al. Acute-phase reactants and a supplemental diagnostic aid for Kawasaki disease[J]. Pediatr Cardiol, 2010, 31(8): 1209-1213.
doi: 10.1007/s00246-010-9801-y |
[8] |
Li X, Chen Y, Tang Y, et al. Predictors of intravenous immune globulin resistant Kawasaki disease in children: a meta-analysis of 4442 cases[J]. Eur J Pediatr, 2018, 177(8): 1279-1292.
doi: 10.1007/s00431-018-3182-2 |
[9] |
Park HM, Lee DW, Hyun MC, et al. Predictors of nonresponse to intravenous immunoglobulin therapy in Kawasaki disease[J]. Korean J Pediatr, 2013, 56(2): 75-79.
doi: 10.3345/kjp.2013.56.2.75 pmid: 23482814 |
[10] |
Hu P, Jiang GM, Wu Y, et al. TNF-α is superior to conventional inflammatory mediators in forecasting IVIG nonresponse and coronary arteritis in Chinese children with Kawasaki disease[J]. Clin Chim Acta, 2017, 471: 76-80.
doi: 10.1016/j.cca.2017.05.019 |
[11] |
Nakamura N, Muto T, Masuda Y, et al. Procalcitonin as a biomarker of unresponsiveness to intravenous immunoglobulin for Kawasaki disease[J]. Pediatr Infect Dis J, 2020, 39(9): 857-861.
doi: 10.1097/INF.0000000000002716 pmid: 32433223 |
[12] |
Wu G, Yue P, Ma F, et al. Neutrophil-to-lymphocyte ratio as a biomarker for predicting the intravenous immunoglobulin resistant Kawasaki disease[J]. Medicine (Baltimore), 2020, 99(6): e18535.
doi: 10.1097/MD.0000000000018535 |
[13] |
Domingnez SR, Martin B, Heizer H, et al. Procal-citonin (PCT) and Kawasaki disease:does pct correlate with IVIG resistant disease,admission to the intensive care unit or development of coronary artery lesions?[J]. J Pediatric Infect Dis Soc, 2016, 5(3): 297-302.
doi: 10.1093/jpids/piv019 |
[14] |
Kuo HC, Liang CD, Wang CL, et al. Serum albumin level predicts initial intravenous immunoglobulin treatment failure in Kawasaki disease[J]. Acta Paediatr, 2010, 99(10): 1578-1583.
doi: 10.1111/j.1651-2227.2010.01875.x |
[15] |
Masuzawa Y, Mori M, Hara T, et al. Elevated D-dimer level is a risk factor for coronary artery lesions accompanying intravenous immunoglobulin-unresponsive Kawasaki disease[J]. Ther Apher Dial, 2015, 19(2): 171-177.
doi: 10.1111/1744-9987.12235 |
[16] |
Teraguchi M, Ogino H, Yoshimura K, et al. Steroid pulse therapy for children with intravenous immunoglobulin therapy-resistant Kawasaki disease: a prospective study[J]. Pediatr Cardiol, 2013, 34(4): 959-963.
doi: 10.1007/s00246-012-0589-9 pmid: 23184018 |
[17] |
Kaneko K, Yoshimura K, Ohashi A, et al. Prediction of the risk of coronaryarterial lesions in Kawasaki disease by brain natriuretic peptide[J]. Pediatr Cardiol, 2011, 32(8): 1106-1109.
doi: 10.1007/s00246-011-9986-8 |
[18] |
Wang T, Liu G, Lin H. A machine learning approach to predict intravenous immunoglobulin resistance in Kawasaki disease patients: a study based on a Southeast China population[J]. PLoS One, 2020, 15(8): e0237321.
doi: 10.1371/journal.pone.0237321 |
[19] |
Kuniyoshi Y, Tokutake H, Takahashi N, et al. Comparison of machine learning models for prediction of initial intravenous immunoglobulin resistance in children with Kawasaki disease[J]. Front Pediatr, 2020, 8: 570834.
doi: 10.3389/fped.2020.570834 |
[20] |
Kobayashi T, Inoue Y, Takeuchi K, et al. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease[J]. Circulation, 2006, 113(22): 2606-2612.
pmid: 16735679 |
[21] |
Egami K, Muta H, Ishii M, et al. Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease[J]. J Pediatr, 2006, 149(2): 237-240.
doi: 10.1016/j.jpeds.2006.03.050 |
[22] |
Sano T, Kurotobi S, Matsuzaki K, et al. Prediction of non-responsiveness to standard high dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment[J]. Eur J Pediatr, 2007, 166(2):131-137.
doi: 10.1007/s00431-006-0223-z |
[23] |
Sato S, Kawashima H, Kashiwagi Y, et al. Inflammatory cytokines as predictors of resistance to intravenous immunoglobulin therapy in Kawasaki disease patients[J]. Int J Rheum Dis, 2013, 16(2): 168-172.
doi: 10.1111/1756-185X.12082 |
[24] |
Kawanlura Y, Takeshita S, Kanai T, et al. The combined usefulness of the neutrophil-to-lymphocyte and platelet lymphocyte ratios in predicting intravenous immunoglobulin resistance with Kawasaki disease[J]. J Pediatr, 2016, 178: 281-284.
doi: 10.1016/j.jpeds.2016.07.035 |
[25] |
Takeshita S, Kanai T, Kawamura Y, et al. A comparison of the predictive validity of the combination of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio and other risk scoring systems for intravenous immunoglobulin-resistance in Kawasaki disease[J]. PLoS One, 2017, 12(5): e0176957.
doi: 10.1371/journal.pone.0176957 |
[26] |
Tremoulet AH, Best BM, Song S, et al. Resistance to intravenous immunoglobulin in children with Kawasaki disease[J]. J Pediatr, 2008, 153(1): 117-121.
doi: 10.1016/j.jpeds.2007.12.021 |
[27] |
Fu PP, Du ZD, Pan YS. Novel predictors of intravenous immunoglobulin resistance in Chinese children with Kawasaki disease[J]. Pediatr Infect Dis J, 2013, 32(8): e319-323.
doi: 10.1097/INF.0b013e31828e887f |
[28] |
Song R, Yao W, Li X. Efficacy of four scoring systems in predicting intravenous immunoglobulin resistance in children with Kawasaki disease in a children's hospital in Beijing, North China[J]. J Pediatr, 2017, 184: 120-124.
doi: 10.1016/j.jpeds.2016.12.018 |
[29] |
Yang S, Song R, Zhang J, et al. Predictive tool for intravenous immunoglobulin resistance of Kawasaki disease in Beijing[J]. Arch Dis Child, 2019, 104(3):262-267.
doi: 10.1136/archdischild-2017-314512 |
[30] |
Tang Y, Yan W, Sun L, et al. Prediction of intravenous simmuno globulin resistance in Kawasaki disease in an east China population[J]. Clin Rheumatol, 2016, 35(11): 2771-2776.
doi: 10.1007/s10067-016-3370-2 |
[31] |
Qian W, Tang Y, Yan W, et al. A comparison of efficacy of six prediction models for intravenous immune globulin resistance in Kawasaki disease[J]. Ital J Pediatr, 2018, 44(1): 33.
doi: 10.1186/s13052-018-0475-z |
[32] |
Hua W, Sun Y, Wang Y, et al. A new model to predict intravenous immunoglobin-resistant Kawasaki disease[J]. Oncotarget, 2017, 8(46): 80722-80729.
doi: 10.18632/oncotarget.21083 pmid: 29113339 |
[33] |
Kong WX, Ma FY, Fu SL, et al. Biomarkers of intravenous immunoglobulin resistance and coronary artery lesions in Kawasaki disease[J]. World J Pediatr, 2019, 15(2):168-175.
doi: 10.1007/s12519-019-00234-6 |
[34] | 朱丹颖, 宋思瑞, 黄敏, 等. 川崎病丙种球蛋白无反应评分模型的建立与研究[J]. 国际儿科学杂志, 2018, 45(7): 532-536. |
[35] | 陈丽琴, 宋思瑞, 黄敏, 等. 川崎病丙种球蛋白无反应型易感基因研究[J]. 临床儿科杂志, 2019, 37(10): 721-726. |
[36] |
Chen LQ, Song SR, Huang M, et al. Prediction for intravenous immunoglobulin resistance combining genetic risk loci identified from next generation sequencing and laboratory data in Kawasaki disease[J]. Front Pediatr, 2020, 8: 462367.
doi: 10.3389/fped.2020.462367 |
[37] |
Wu S, Long Y, Chen S, et al. A new scoring system for prediction of intravenous immunoglobulin resistance of Kawasaki disease in infants under 1-year old[J]. Front Pediatr, 2019, 7: 514.
doi: 10.3389/fped.2019.00514 |
[38] |
Wu S, Liao Y, Sun Y, et al. Prediction of intravenous immune globulin resistance in Kawasaki disease in children[J]. World J Pediatr, 2020, 16(6): 607-613.
doi: 10.1007/s12519-020-00348-2 |
[39] |
Tan XH, Zhang XW, Wang XY, et al. A new model for predicting intravenous immunoglobin-resistant Kawasaki disease in Chongqing: a retrospective study on 5277 patients[J]. Sci Rep, 2019, 9(1): 1722.
doi: 10.1038/s41598-019-39330-y |
[40] | 谢丽萍, 黄国英, 刘芳, 等. 对川崎病患儿静脉注射丙种球蛋白耐药临床预测模型建立的质疑[J]. 中国循证儿科杂志, 2019, 14(3): 169-175. |
[41] |
Bar-Meir M, Kalisky I, Schwartz A, et al. Prediction of resistance to intravenous immunoglobulin in children with Kawasaki disease[J]. J Pediatric Infect Dis Soc, 2018, 7: 25-29.
doi: 10.1093/jpids/piw075 pmid: 28062554 |
[42] |
Grignani R, Rajgor DD, Leow YG, et al. A novel model forpredicting non-responsiveness to intravenous immunoglobulins in Kawasaki disease: the Singapore experience[J]. J Paediatr Child Health, 2019, 55(8): 962-967.
doi: 10.1111/jpc.14329 |
[43] |
Chen L, Song S, Ning Q, et al. Prediction for intravenous immunoglobulin resistance combining genetic risk loci identified from next generation sequencing and laboratory data in kawasaki disease[J]. Front Pediatr. 2020, 8: 462367.
doi: 10.3389/fped.2020.462367 |
[44] |
Kuo HC, Wong HS, Chang WP, et al. Prediction for intravenous immunoglobulin resistance by using weighted genetic risk score identified from genome-wide association study in Kawasaki disease[J]. Circ Cardiovasc Genet, 2017, 10(5): e001625.
doi: 10.1161/CIRCGENETICS.116.001625 |
[1] | 罗明静, 余嘉明, 王晓东, 张小玲, 余阅, 张瑜, 文飞球, 刘四喜. 424例地中海贫血患儿异基因造血干细胞移植后继发侵袭性真菌病临床分析[J]. 临床儿科杂志, 2025, 43(1): 21-28. |
[2] | 刘冬霞, 金蓉, 林荣军. 儿童重症难治性肺炎支原体肺炎并发闭塞性支气管炎危险因素分析[J]. 临床儿科杂志, 2025, 43(1): 29-34. |
[3] | 钟瑾虹, 王灿, 陈芳. 婴幼儿纤维支气管镜诊疗中镇静技术的研究进展[J]. 临床儿科杂志, 2025, 43(1): 50-55. |
[4] | 蒋卫芹, 王静, 程安娜, 陈婷婷, 黄玉娟. 儿童热性惊厥急性期惊厥复发的危险因素分析[J]. 临床儿科杂志, 2025, 43(1): 8-13. |
[5] | 邱琇, 韦冬梅, 林珊珊, 夏慧敏, 周文浩. 广州出生队列研究的理念与实践[J]. 临床儿科杂志, 2024, 42(9): 747-752. |
[6] | 陈倩, 田英, 孙锟, 张军. 关注环境、立足疾病的大型出生队列研究平台[J]. 临床儿科杂志, 2024, 42(9): 753-757. |
[7] | 范建霞. 健康生命轨迹计划缘起与发展:社区-家庭-母婴多层面儿童超重与肥胖干预研究队列[J]. 临床儿科杂志, 2024, 42(9): 768-773. |
[8] | 姜涛, 李双杰, 唐莲, 欧阳文献. 慢性乙型肝炎患儿外周血MAIT细胞的免疫生物学特性[J]. 临床儿科杂志, 2024, 42(9): 787-790. |
[9] | 周洁, 刘克强, 王金玲, 王莹. MYH11延长突变导致巨膀胱-小结肠-肠蠕动不良综合征1例报告及文献复习[J]. 临床儿科杂志, 2024, 42(9): 798-804. |
[10] | 褚思嘉, 汤继宏. 儿童急性淋巴细胞白血病及其治疗所伴发的中枢神经系统损伤研究进展[J]. 临床儿科杂志, 2024, 42(9): 811-816. |
[11] | 丁亚平, 夏姗姗, 张晨美. 《2023年国际儿童肾脏营养工作组临床实践建议:儿童急性肾损伤的营养管理》解读[J]. 临床儿科杂志, 2024, 42(8): 667-672. |
[12] | 李怡蓉, 李惠萍, 高靖瑜, 肖玉华, 陈小敏, 卢艳玲, 赵娜娜, 冯晓勤. FLAG-IDA诱导化疗方案中不同剂量阿糖胞苷治疗儿童急性髓系白血病疗效比较[J]. 临床儿科杂志, 2024, 42(8): 673-677. |
[13] | 黄博, 董艳迎, 宋琳岚. 儿童传染性单核细胞增多症348例临床特征分析[J]. 临床儿科杂志, 2024, 42(8): 678-683. |
[14] | 王丹, 邵静波, 李红, 张娜, 朱嘉莳, 付盼, 王真. 儿童血液系统恶性肿瘤并发肿瘤溶解综合征38例临床特点分析[J]. 临床儿科杂志, 2024, 42(8): 684-690. |
[15] | 马岩, 韦性娇, 白华, 张艳, 田新敏, Aqsa Ahmad, 梁丽俊. 西部地区某三甲医院儿童慢性肾脏病5期病因构成及临床特征分析[J]. 临床儿科杂志, 2024, 42(8): 697-703. |
|