临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (5): 333-338.doi: 10.12372/jcp.2022.23e0163
王金荣1, 苗瑜1, 光增2, 曹洛菲2
收稿日期:
2023-03-13
出版日期:
2023-05-15
发布日期:
2023-05-10
基金资助:
WANG Jinrong1, MIAO Yu1, MA Guangzeng2, CAO Luofei2
Received:
2023-03-13
Published:
2023-05-15
Online:
2023-05-10
摘要:
COVID-19的流行使儿童哮喘的管理受到了新的挑战。文章从分子机制到病理改变,分析哮喘儿童气道损伤,探讨新型冠状病毒对肺功能的影响,以为临床医师在新冠疫情背景下儿童哮喘的诊治提供参考。
王金荣, 苗瑜, 光增, 曹洛菲. 新型冠状病毒感染对哮喘儿童肺功能影响[J]. 临床儿科杂志, 2023, 41(5): 333-338.
WANG Jinrong, MIAO Yu, MA Guangzeng, CAO Luofei. Effect of SARS-CoV-2 infection on pulmonary function in children with asthma[J]. Journal of Clinical Pediatrics, 2023, 41(5): 333-338.
[1] | World Health Organization. WHO Coronavirus (COVID-19)[EB/OL]. [2022-02-25]. https://covid19.who.int. |
[2] | No authors listed. The global asthma report 2022[J]. Int J Tuberc Lung Dis, 2022, 26(1): 1-104. |
[3] | Campos C, Prokopich S, Loewen H, et al. Long-term effect of COVID-19 on lung imaging and function, cardiorespiratory symptoms, fatigue, exercise capacity, and functional capacity in children and adolescents: a systematic review and meta-analysis[J]. Healthcare (Basel), 2022, 10(12): 2492. |
[4] |
Seibold MA, Moore CM, Everman JL, et al. Risk factors for SARS-CoV-2 infection and transmission in households with children with asthma and allergy: a prospective surveillance study[J]. J Allergy Clin Immunol, 2022, 150(2): 302-311.
doi: 10.1016/j.jaci.2022.05.014 pmid: 35660376 |
[5] |
Kompaniyets L, Agathis NT, Nelson JM, et al. Underlying medical conditions associated with severe COVID-19 illness among children[J]. JAMA Netw Open, 2021, 4(6): e2111182.
doi: 10.1001/jamanetworkopen.2021.11182 |
[6] |
Shi T, Pan J, Katikireddi SV, et al. Risk of COVID-19 hospital admission among children aged 5-17 years with asthma in Scotland: a national incident cohort study[J]. Lancet Respir Med, 2022, 10: 191-198.
doi: 10.1016/S2213-2600(21)00491-4 |
[7] | Chiang CY, Ellwood P, Ellwood E, et al. Infection with SARS-CoV-2 among children with asthma: evidence from Global Asthma Network[J]. Pediatr Allergy Immunol, 2022, 33(1): e13709. |
[8] |
Pivniouk V, Pivniouk O, DeVries A, et al. The OM-85 bacterial lysate inhibits SARS-CoV-2 infection of epithelial cells by downregulating SARS-CoV-2 receptor expression[J]. J Allergy Clin Immunol, 2022, 149(3): 923-933..
doi: 10.1016/j.jaci.2021.11.019 |
[9] |
Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: immunity, inflammation and intervention[J]. Nat Rev Immunol, 2020, 20(6): 363-374.
doi: 10.1038/s41577-020-0311-8 pmid: 32346093 |
[10] |
Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19[J]. Nat Rev Immunol, 2021, 21(11): 694-703.
doi: 10.1038/s41577-021-00588-x pmid: 34373622 |
[11] |
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet (London, England), 2020, 395(10223): 497-506.
doi: 10.1016/S0140-6736(20)30183-5 |
[12] |
Shoenfeld Y. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning[J]. Autoimmun Rev, 2020, 19(6): 102538.
doi: 10.1016/j.autrev.2020.102538 |
[13] |
Zhao L, Zhang YP, Yang X, et al. Eosinopenia is associated with greater severity in patients with coronavirus disease 2019[J]. Allergy, 2021, 76: 562-564.
doi: 10.1111/all.v76.2 |
[14] | Crook H, Raza S, Nowell J, et al. Long covid-mechanisms, risk factors, and management[J]. BMJ, 2021, 374: n1648. |
[15] |
Cui S, Chen S, Li X, et al. Prevalence of venous throm-boembolism in patients with severe novel coronavirus pneumonia[J]. J Thromb Haemost, 2020, 18(6): 1421-1424.
doi: 10.1111/jth.14830 |
[16] |
Torres-Castro R, Vasconcello-Castillo L, Alsina-Restoy X, et al. Respiratory function in patients post-infection by COVID-19: a systematic review and meta-analysis[J]. Pulmonology, 2021, 27: 328-337.
doi: 10.1016/j.pulmoe.2020.10.013 |
[17] |
Öztürk GK, Beken B, Doğan S, et al. Pulmonary function tests in the follow-up of children with COVID-19[J]. Eur J Pediatr, 2022, 181: 2839-2847.
doi: 10.1007/s00431-022-04493-w pmid: 35522314 |
[18] |
Soyak Aytekin E, Sahiner UM, Tuten Dal S, et al. Obesity is a risk factor for decrease in lung function after COVID-19 infection in children with asthma[J]. Pediatr Pulmonol, 2022, 57: 1668-1676.
doi: 10.1002/ppul.v57.7 |
[19] |
Choudhary S, Sharma K, Silakari O. The interplay between inflammatory pathways and COVID-19: a critical review on pathogenesis and therapeutic options[J]. Microb Pathog, 2021, 150: 104673.
doi: 10.1016/j.micpath.2020.104673 |
[20] |
D'Agnillo F, Walters KA, Xiao Y, et al. Lung epithelial and endothelial damage, loss of tissue repair, inhibition of fibrinolysis, and cellular senescence in fatal COVID-19[J]. Sci Transl Med, 2021, 13: eabj7790.
doi: 10.1126/scitranslmed.abj7790 |
[21] |
Du X, Yang Y, Yang Mg et al. ITGB4 deficiency induces mucus hypersecretion by upregulating MUC5AC in RSV-infected airway epithelial cells[J]. Int J Biol Sci, 2022, 18: 349-359.
doi: 10.7150/ijbs.66215 pmid: 34975337 |
[22] |
Sajuthi SP, DeFord P, Li Y, et al. Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium[J]. Nat Commun, 2020, 11(1): 5139.
doi: 10.1038/s41467-020-18781-2 pmid: 33046696 |
[23] |
Postma DS, Brightling C, Baldi S, et al. Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): baseline data from a prospective cohort study[J]. Lancet Respir Med, 2019, 7(5): 402-416.
doi: 10.1016/S2213-2600(19)30049-9 pmid: 30876830 |
[24] |
Ashkenazi-Hoffnung L, Shmueli E, Ehrlich S, et al. Long COVID in children: observations from a designated pediatric clinic[J]. Pediatr Infect Dis J, 2021, 40: e509-e511.
doi: 10.1097/INF.0000000000003285 pmid: 34371507 |
[25] |
Maniscalco M, Ambrosino P, Fuschillo S, et al. Bronchodilator reversibility testing in post-COVID-19 patients undergoing pulmonary rehabilitation[J]. Respir Med, 2021, 182: 106401.
doi: 10.1016/j.rmed.2021.106401 |
[26] |
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8(4): 420-422.
doi: 10.1016/S2213-2600(20)30076-X pmid: 32085846 |
[27] | 国家儿童医学中心, 首都医科大学附属北京儿童医院新型冠状病毒感染重症救治专家组, 北京儿童新型冠状病毒感染医疗救治市级专家组. 儿童新型冠状病毒Omicron变异株感染重症早期识别和诊治建议[J]. 中华儿科杂志, 2023, 61(3): 199-202. |
[28] |
Faverio P, Luppi F, Rebora P, et al. Six-month pulmonary impairment after severe COVID-19: a prospective, multicentre follow-up study[J]. Respiration, 2021, 100: 1078-1087.
doi: 10.1159/000518141 |
[29] |
Xu C, Ma M, Yi Y, et al. Clinical features and high-resolution chest computerized tomography findings of children infected by the B.1.617.2 variant of coronavirus disease 2019[J]. Ann Med, 2022, 54(1): 2391-2401.
doi: 10.1080/07853890.2022.2114608 pmid: 36039499 |
[30] |
Long ME, Mallampalli RK, Horowitz JC. Pathogenesis of pneumonia and acute lung injury[J]. Clin Sci (Lond), 2022, 136(10): 747-769.
doi: 10.1042/CS20210879 pmid: 35621124 |
[31] |
Heiss R, Tan L, Schmidt S, et al. Pulmonary dysfunction after pediatric COVID-19[J]. Radiology, 2023, 306(3): e221250.
doi: 10.1148/radiol.221250 |
[32] | Camporota L, Cronin JN, Busana M, et al. Pathophysiology of coronavirus-19 disease acute lung injury[J]. Curr Opin Crit Care e, 2022, 28(1): 9-16. |
[33] |
Xiao C, Puddicombe SM, Field S, et al. Defective epithelial barrier function in asthma[J]. J Allergy Clin Immunol, 2011, 128(3): 549-556.
doi: 10.1016/j.jaci.2011.05.038 pmid: 21752437 |
[34] | Bajbouj K, Ramakrishnan RK, Hamid Q. Role of matrix metalloproteinases in angiogenesis and its implications in asthma[J]. J Immunol Res, 2021: 6645072. |
[35] |
Lee KS, Min KH, Kim SR, et al. Vascular endothelial growth factor modulates matrix metalloproteinase-9 expression in asthma[J]. Am J Respir Crit Care Med, 2006, 174(2): 161-170.
doi: 10.1164/rccm.200510-1558OC |
[36] |
Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19[J]. Nature, 2020, 584(7821): 463-469.
doi: 10.1038/s41586-020-2588-y |
[37] |
Pathinayake PS, Awatade NT, Wark PAB. Type 2 immunity and its impact on COVID-19 infection in the airways[J]. Viruses, 2023, 15(2): 402.
doi: 10.3390/v15020402 |
[38] |
Roberts LM, Jessop F, Wehrly TD, et al. CuttinG EDGE: LUNG-RESident T cells elicited by SARS-CoV-2 do not mediate protection against secondary infection[J]. J Immunol, 2021, 207(10): 2399-404.
doi: 10.4049/jimmunol.2100608 pmid: 34607940 |
[39] | Rahimi RA, Nepal K, Cetinbas M, et al. Distinct functions of tissue-resident and circulating memory Th2 cells in allergic airway disease[J]. J Exp Med, 2020, 217(9) : e20190865. |
[40] | May BC, Gallivan KH. Levocetirizine and montelukast in the COVID-19 treatment paradigm[J]. Int Immu-nopharmacol, 2022, 103: 108412. |
[41] |
Mera-Cordero F, Bonet-Monne S, Almeda-Ortega J, et al. Double-blind placebo-controlled randomized clinical trial to assess the efficacy of montelukast in mild to moderate respiratory symptoms of patients with long COVID: E-SPERANZA COVID Project study protocol[J]. Trials, 2022, 23(1): 19.
doi: 10.1186/s13063-021-05951-w pmid: 34991703 |
[42] |
Zhang L, Wang X, Huang Y, et al. Pediatric asthma situation in Chengdu, China, during the COVID-19 pandemic: an observational study[J]. J Asthma Allergy, 2021, 14: 829-838.
doi: 10.2147/JAA.S315695 pmid: 34276218 |
[43] |
Borg Bm, Osadnik C, Adam K, et al. Pulmonary function testing during SARS-CoV-2: An ANZSRS/TSANZ position statement[J]. Respirology, 2022, 27(9): 688-719.
doi: 10.1111/resp.14340 pmid: 35981737 |
[44] |
Franczuk M, Przybyłowski T, Czajkowska-Malinowska M, et al. Spirometry during the SARS-CoV-2 pandemic. Guidelines and practical advice from the expert panel of Respiratory Physiopathology Assembly of Polish Respiratory Society[J]. Adv Respir Med, 2020, 88(6): 640-650.
doi: 10.5603/ARM.a2020.0186 pmid: 33393664 |
[1] | 罗明静, 余嘉明, 王晓东, 张小玲, 余阅, 张瑜, 文飞球, 刘四喜. 424例地中海贫血患儿异基因造血干细胞移植后继发侵袭性真菌病临床分析[J]. 临床儿科杂志, 2025, 43(1): 21-28. |
[2] | 刘冬霞, 金蓉, 林荣军. 儿童重症难治性肺炎支原体肺炎并发闭塞性支气管炎危险因素分析[J]. 临床儿科杂志, 2025, 43(1): 29-34. |
[3] | 钟瑾虹, 王灿, 陈芳. 婴幼儿纤维支气管镜诊疗中镇静技术的研究进展[J]. 临床儿科杂志, 2025, 43(1): 50-55. |
[4] | 蒋卫芹, 王静, 程安娜, 陈婷婷, 黄玉娟. 儿童热性惊厥急性期惊厥复发的危险因素分析[J]. 临床儿科杂志, 2025, 43(1): 8-13. |
[5] | 邱琇, 韦冬梅, 林珊珊, 夏慧敏, 周文浩. 广州出生队列研究的理念与实践[J]. 临床儿科杂志, 2024, 42(9): 747-752. |
[6] | 陈倩, 田英, 孙锟, 张军. 关注环境、立足疾病的大型出生队列研究平台[J]. 临床儿科杂志, 2024, 42(9): 753-757. |
[7] | 范建霞. 健康生命轨迹计划缘起与发展:社区-家庭-母婴多层面儿童超重与肥胖干预研究队列[J]. 临床儿科杂志, 2024, 42(9): 768-773. |
[8] | 姜涛, 李双杰, 唐莲, 欧阳文献. 慢性乙型肝炎患儿外周血MAIT细胞的免疫生物学特性[J]. 临床儿科杂志, 2024, 42(9): 787-790. |
[9] | 周洁, 刘克强, 王金玲, 王莹. MYH11延长突变导致巨膀胱-小结肠-肠蠕动不良综合征1例报告及文献复习[J]. 临床儿科杂志, 2024, 42(9): 798-804. |
[10] | 褚思嘉, 汤继宏. 儿童急性淋巴细胞白血病及其治疗所伴发的中枢神经系统损伤研究进展[J]. 临床儿科杂志, 2024, 42(9): 811-816. |
[11] | 丁亚平, 夏姗姗, 张晨美. 《2023年国际儿童肾脏营养工作组临床实践建议:儿童急性肾损伤的营养管理》解读[J]. 临床儿科杂志, 2024, 42(8): 667-672. |
[12] | 李怡蓉, 李惠萍, 高靖瑜, 肖玉华, 陈小敏, 卢艳玲, 赵娜娜, 冯晓勤. FLAG-IDA诱导化疗方案中不同剂量阿糖胞苷治疗儿童急性髓系白血病疗效比较[J]. 临床儿科杂志, 2024, 42(8): 673-677. |
[13] | 黄博, 董艳迎, 宋琳岚. 儿童传染性单核细胞增多症348例临床特征分析[J]. 临床儿科杂志, 2024, 42(8): 678-683. |
[14] | 王丹, 邵静波, 李红, 张娜, 朱嘉莳, 付盼, 王真. 儿童血液系统恶性肿瘤并发肿瘤溶解综合征38例临床特点分析[J]. 临床儿科杂志, 2024, 42(8): 684-690. |
[15] | 马岩, 韦性娇, 白华, 张艳, 田新敏, Aqsa Ahmad, 梁丽俊. 西部地区某三甲医院儿童慢性肾脏病5期病因构成及临床特征分析[J]. 临床儿科杂志, 2024, 42(8): 697-703. |
|