临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (5): 333-338.doi: 10.12372/jcp.2022.23e0163
王金荣1, 苗瑜1, 光增2, 曹洛菲2
收稿日期:
2023-03-13
出版日期:
2023-05-15
发布日期:
2023-05-10
基金资助:
WANG Jinrong1, MIAO Yu1, MA Guangzeng2, CAO Luofei2
Received:
2023-03-13
Online:
2023-05-15
Published:
2023-05-10
摘要:
COVID-19的流行使儿童哮喘的管理受到了新的挑战。文章从分子机制到病理改变,分析哮喘儿童气道损伤,探讨新型冠状病毒对肺功能的影响,以为临床医师在新冠疫情背景下儿童哮喘的诊治提供参考。
王金荣, 苗瑜, 光增, 曹洛菲. 新型冠状病毒感染对哮喘儿童肺功能影响[J]. 临床儿科杂志, 2023, 41(5): 333-338.
WANG Jinrong, MIAO Yu, MA Guangzeng, CAO Luofei. Effect of SARS-CoV-2 infection on pulmonary function in children with asthma[J]. Journal of Clinical Pediatrics, 2023, 41(5): 333-338.
[1] | World Health Organization. WHO Coronavirus (COVID-19)[EB/OL]. [2022-02-25]. https://covid19.who.int. |
[2] | No authors listed. The global asthma report 2022[J]. Int J Tuberc Lung Dis, 2022, 26(1): 1-104. |
[3] | Campos C, Prokopich S, Loewen H, et al. Long-term effect of COVID-19 on lung imaging and function, cardiorespiratory symptoms, fatigue, exercise capacity, and functional capacity in children and adolescents: a systematic review and meta-analysis[J]. Healthcare (Basel), 2022, 10(12): 2492. |
[4] |
Seibold MA, Moore CM, Everman JL, et al. Risk factors for SARS-CoV-2 infection and transmission in households with children with asthma and allergy: a prospective surveillance study[J]. J Allergy Clin Immunol, 2022, 150(2): 302-311.
doi: 10.1016/j.jaci.2022.05.014 pmid: 35660376 |
[5] |
Kompaniyets L, Agathis NT, Nelson JM, et al. Underlying medical conditions associated with severe COVID-19 illness among children[J]. JAMA Netw Open, 2021, 4(6): e2111182.
doi: 10.1001/jamanetworkopen.2021.11182 |
[6] |
Shi T, Pan J, Katikireddi SV, et al. Risk of COVID-19 hospital admission among children aged 5-17 years with asthma in Scotland: a national incident cohort study[J]. Lancet Respir Med, 2022, 10: 191-198.
doi: 10.1016/S2213-2600(21)00491-4 |
[7] | Chiang CY, Ellwood P, Ellwood E, et al. Infection with SARS-CoV-2 among children with asthma: evidence from Global Asthma Network[J]. Pediatr Allergy Immunol, 2022, 33(1): e13709. |
[8] |
Pivniouk V, Pivniouk O, DeVries A, et al. The OM-85 bacterial lysate inhibits SARS-CoV-2 infection of epithelial cells by downregulating SARS-CoV-2 receptor expression[J]. J Allergy Clin Immunol, 2022, 149(3): 923-933..
doi: 10.1016/j.jaci.2021.11.019 |
[9] |
Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: immunity, inflammation and intervention[J]. Nat Rev Immunol, 2020, 20(6): 363-374.
doi: 10.1038/s41577-020-0311-8 pmid: 32346093 |
[10] |
Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19[J]. Nat Rev Immunol, 2021, 21(11): 694-703.
doi: 10.1038/s41577-021-00588-x pmid: 34373622 |
[11] |
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet (London, England), 2020, 395(10223): 497-506.
doi: 10.1016/S0140-6736(20)30183-5 |
[12] |
Shoenfeld Y. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning[J]. Autoimmun Rev, 2020, 19(6): 102538.
doi: 10.1016/j.autrev.2020.102538 |
[13] |
Zhao L, Zhang YP, Yang X, et al. Eosinopenia is associated with greater severity in patients with coronavirus disease 2019[J]. Allergy, 2021, 76: 562-564.
doi: 10.1111/all.v76.2 |
[14] | Crook H, Raza S, Nowell J, et al. Long covid-mechanisms, risk factors, and management[J]. BMJ, 2021, 374: n1648. |
[15] |
Cui S, Chen S, Li X, et al. Prevalence of venous throm-boembolism in patients with severe novel coronavirus pneumonia[J]. J Thromb Haemost, 2020, 18(6): 1421-1424.
doi: 10.1111/jth.14830 |
[16] |
Torres-Castro R, Vasconcello-Castillo L, Alsina-Restoy X, et al. Respiratory function in patients post-infection by COVID-19: a systematic review and meta-analysis[J]. Pulmonology, 2021, 27: 328-337.
doi: 10.1016/j.pulmoe.2020.10.013 |
[17] |
Öztürk GK, Beken B, Doğan S, et al. Pulmonary function tests in the follow-up of children with COVID-19[J]. Eur J Pediatr, 2022, 181: 2839-2847.
doi: 10.1007/s00431-022-04493-w pmid: 35522314 |
[18] |
Soyak Aytekin E, Sahiner UM, Tuten Dal S, et al. Obesity is a risk factor for decrease in lung function after COVID-19 infection in children with asthma[J]. Pediatr Pulmonol, 2022, 57: 1668-1676.
doi: 10.1002/ppul.v57.7 |
[19] |
Choudhary S, Sharma K, Silakari O. The interplay between inflammatory pathways and COVID-19: a critical review on pathogenesis and therapeutic options[J]. Microb Pathog, 2021, 150: 104673.
doi: 10.1016/j.micpath.2020.104673 |
[20] |
D'Agnillo F, Walters KA, Xiao Y, et al. Lung epithelial and endothelial damage, loss of tissue repair, inhibition of fibrinolysis, and cellular senescence in fatal COVID-19[J]. Sci Transl Med, 2021, 13: eabj7790.
doi: 10.1126/scitranslmed.abj7790 |
[21] |
Du X, Yang Y, Yang Mg et al. ITGB4 deficiency induces mucus hypersecretion by upregulating MUC5AC in RSV-infected airway epithelial cells[J]. Int J Biol Sci, 2022, 18: 349-359.
doi: 10.7150/ijbs.66215 pmid: 34975337 |
[22] |
Sajuthi SP, DeFord P, Li Y, et al. Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium[J]. Nat Commun, 2020, 11(1): 5139.
doi: 10.1038/s41467-020-18781-2 pmid: 33046696 |
[23] |
Postma DS, Brightling C, Baldi S, et al. Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): baseline data from a prospective cohort study[J]. Lancet Respir Med, 2019, 7(5): 402-416.
doi: 10.1016/S2213-2600(19)30049-9 pmid: 30876830 |
[24] |
Ashkenazi-Hoffnung L, Shmueli E, Ehrlich S, et al. Long COVID in children: observations from a designated pediatric clinic[J]. Pediatr Infect Dis J, 2021, 40: e509-e511.
doi: 10.1097/INF.0000000000003285 pmid: 34371507 |
[25] |
Maniscalco M, Ambrosino P, Fuschillo S, et al. Bronchodilator reversibility testing in post-COVID-19 patients undergoing pulmonary rehabilitation[J]. Respir Med, 2021, 182: 106401.
doi: 10.1016/j.rmed.2021.106401 |
[26] |
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8(4): 420-422.
doi: 10.1016/S2213-2600(20)30076-X pmid: 32085846 |
[27] | 国家儿童医学中心, 首都医科大学附属北京儿童医院新型冠状病毒感染重症救治专家组, 北京儿童新型冠状病毒感染医疗救治市级专家组. 儿童新型冠状病毒Omicron变异株感染重症早期识别和诊治建议[J]. 中华儿科杂志, 2023, 61(3): 199-202. |
[28] |
Faverio P, Luppi F, Rebora P, et al. Six-month pulmonary impairment after severe COVID-19: a prospective, multicentre follow-up study[J]. Respiration, 2021, 100: 1078-1087.
doi: 10.1159/000518141 |
[29] |
Xu C, Ma M, Yi Y, et al. Clinical features and high-resolution chest computerized tomography findings of children infected by the B.1.617.2 variant of coronavirus disease 2019[J]. Ann Med, 2022, 54(1): 2391-2401.
doi: 10.1080/07853890.2022.2114608 pmid: 36039499 |
[30] |
Long ME, Mallampalli RK, Horowitz JC. Pathogenesis of pneumonia and acute lung injury[J]. Clin Sci (Lond), 2022, 136(10): 747-769.
doi: 10.1042/CS20210879 pmid: 35621124 |
[31] |
Heiss R, Tan L, Schmidt S, et al. Pulmonary dysfunction after pediatric COVID-19[J]. Radiology, 2023, 306(3): e221250.
doi: 10.1148/radiol.221250 |
[32] | Camporota L, Cronin JN, Busana M, et al. Pathophysiology of coronavirus-19 disease acute lung injury[J]. Curr Opin Crit Care e, 2022, 28(1): 9-16. |
[33] |
Xiao C, Puddicombe SM, Field S, et al. Defective epithelial barrier function in asthma[J]. J Allergy Clin Immunol, 2011, 128(3): 549-556.
doi: 10.1016/j.jaci.2011.05.038 pmid: 21752437 |
[34] | Bajbouj K, Ramakrishnan RK, Hamid Q. Role of matrix metalloproteinases in angiogenesis and its implications in asthma[J]. J Immunol Res, 2021: 6645072. |
[35] |
Lee KS, Min KH, Kim SR, et al. Vascular endothelial growth factor modulates matrix metalloproteinase-9 expression in asthma[J]. Am J Respir Crit Care Med, 2006, 174(2): 161-170.
doi: 10.1164/rccm.200510-1558OC |
[36] |
Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19[J]. Nature, 2020, 584(7821): 463-469.
doi: 10.1038/s41586-020-2588-y |
[37] |
Pathinayake PS, Awatade NT, Wark PAB. Type 2 immunity and its impact on COVID-19 infection in the airways[J]. Viruses, 2023, 15(2): 402.
doi: 10.3390/v15020402 |
[38] |
Roberts LM, Jessop F, Wehrly TD, et al. CuttinG EDGE: LUNG-RESident T cells elicited by SARS-CoV-2 do not mediate protection against secondary infection[J]. J Immunol, 2021, 207(10): 2399-404.
doi: 10.4049/jimmunol.2100608 pmid: 34607940 |
[39] | Rahimi RA, Nepal K, Cetinbas M, et al. Distinct functions of tissue-resident and circulating memory Th2 cells in allergic airway disease[J]. J Exp Med, 2020, 217(9) : e20190865. |
[40] | May BC, Gallivan KH. Levocetirizine and montelukast in the COVID-19 treatment paradigm[J]. Int Immu-nopharmacol, 2022, 103: 108412. |
[41] |
Mera-Cordero F, Bonet-Monne S, Almeda-Ortega J, et al. Double-blind placebo-controlled randomized clinical trial to assess the efficacy of montelukast in mild to moderate respiratory symptoms of patients with long COVID: E-SPERANZA COVID Project study protocol[J]. Trials, 2022, 23(1): 19.
doi: 10.1186/s13063-021-05951-w pmid: 34991703 |
[42] |
Zhang L, Wang X, Huang Y, et al. Pediatric asthma situation in Chengdu, China, during the COVID-19 pandemic: an observational study[J]. J Asthma Allergy, 2021, 14: 829-838.
doi: 10.2147/JAA.S315695 pmid: 34276218 |
[43] |
Borg Bm, Osadnik C, Adam K, et al. Pulmonary function testing during SARS-CoV-2: An ANZSRS/TSANZ position statement[J]. Respirology, 2022, 27(9): 688-719.
doi: 10.1111/resp.14340 pmid: 35981737 |
[44] |
Franczuk M, Przybyłowski T, Czajkowska-Malinowska M, et al. Spirometry during the SARS-CoV-2 pandemic. Guidelines and practical advice from the expert panel of Respiratory Physiopathology Assembly of Polish Respiratory Society[J]. Adv Respir Med, 2020, 88(6): 640-650.
doi: 10.5603/ARM.a2020.0186 pmid: 33393664 |
[1] | 邹丽萍. 儿童脑病:一类与各种疾病都相关的疾病[J]. 临床儿科杂志, 2023, 41(9): 641-643. |
[2] | 张炜华, 邹丽萍, 任海涛, 关鸿志. 警惕儿童自身免疫性脑炎诊治陷阱[J]. 临床儿科杂志, 2023, 41(9): 644-649. |
[3] | 侯池, 陈文雄, 廖寅婷, 吴文晓, 田杨, 朱海霞, 彭炳蔚, 曾意茹, 吴汶霖, 陈宗宗, 李小晶. 儿童自身免疫性胶质纤维酸性蛋白星形胶质细胞病临床分析[J]. 临床儿科杂志, 2023, 41(9): 656-660. |
[4] | 杨雅婷, 蔡玥昊, 方琼, 陈琅, 陈巧彬, 林志, 吴菲菲, 林萌. 儿童特发性和症状性枕叶癫痫临床分析[J]. 临床儿科杂志, 2023, 41(9): 668-673. |
[5] | 侯若琳, 吴静, 李玲. 头颅MRI以脑膜增厚伴强化表现的儿童自身免疫性脑炎[J]. 临床儿科杂志, 2023, 41(9): 674-679. |
[6] | 武跃芳, 孙艳玲, 武万水, 杜淑旭, 李苗, 孙黎明. G4型髓母细胞瘤患儿预后影响因素及生存状况分析[J]. 临床儿科杂志, 2023, 41(9): 686-691. |
[7] | 孙娟, 李海英, 贾沛生, 王怀立. 儿童暴发性心肌炎12例临床分析[J]. 临床儿科杂志, 2023, 41(9): 692-696. |
[8] | 汪陈慧, 杨辉. 儿童克罗恩病早期筛查和诊断研究进展[J]. 临床儿科杂志, 2023, 41(9): 708-714. |
[9] | 沈楠, 杜白露. 血液肿瘤患儿侵袭性真菌感染诊治和管理策略[J]. 临床儿科杂志, 2023, 41(8): 571-577. |
[10] | 徐贝雪, 刘泉波. 儿童侵袭性肺部真菌感染195例临床分析[J]. 临床儿科杂志, 2023, 41(8): 584-588. |
[11] | 陈虹宇, 刘梓豪, 王和平, 廖翠娟, 李莉, 王文建, 赖建威. 不可分型流感嗜血杆菌生物膜在儿童慢性肺部感染中的作用[J]. 临床儿科杂志, 2023, 41(8): 589-593. |
[12] | 康磊, 郭芳, 李立方, 白新凤, 程彩云, 徐梅先. 宏基因组二代测序在儿童内脏利什曼病相关噬血淋巴组织细胞增生症中的应用价值[J]. 临床儿科杂志, 2023, 41(8): 594-598. |
[13] | 邬晓玲, 吕铁伟. 儿童特发性左室室性心动过速临床分析[J]. 临床儿科杂志, 2023, 41(8): 599-603. |
[14] | 孙智才, 刘玉玲, 李小琳, 潘晓芬. 儿童原发性肾病综合征合并肾上腺危象15例临床分析[J]. 临床儿科杂志, 2023, 41(8): 610-612. |
[15] | 王红霞, 潘翔, 逯军. DHTKD1基因复合杂合变异致α-酮己二酸尿症1例报告[J]. 临床儿科杂志, 2023, 41(8): 624-628. |
|