[1] |
Lancaster E, Dalmau J. Neuronal autoantigens: patho-genesis, associated disorders and antibody testing[J]. Nat Rev Neurol, 2012, 8(7): 380-390.
doi: 10.1038/nrneurol.2012.99
pmid: 22710628
|
[2] |
Li XJ, Hou C, Wu WL, et al. Pediatric anti-N-methyl-D-aspartate receptor encephalitis in southern China: analysis of 111 cases[J]. J Neuroimmunol, 2021, 352: 577479.
doi: 10.1016/j.jneuroim.2021.577479
|
[3] |
Wang R, Lai XH, Liu X, et al. Brain magnetic resonance-imaging findings of anti-N-methyl-D-aspartate receptor encephalitis: a cohort follow-up study in Chinese patients[J]. Neurol, 2018, 265(2): 362-369.
doi: 10.1007/s00415-017-8707-5
|
[4] |
Zhang T, Duan Y, Ye J, et al. Brain MRI characteristics of patients with anti-N-methyl-D aspartate receptor encephalitis and their associations with 2-year clinical outcome[J]. AJNR Am J Neuroradiol, 2018, 39(5): 824-829.
doi: 10.3174/ajnr.A5593
|
[5] |
Xiao X, Fu D, Feng L. Hypertrophic pachymeningitis in a southern Chinese population: a retrospective study[J]. Front Neurol, 2020, 11: 565088.
doi: 10.3389/fneur.2020.565088
|
[6] |
Cellucci T, Van Mater H, Graus F, et al. Clinical approach to the diagnosis of autoimmune encephalitis in the pediatric patient[J]. Neurol Neuroimmunol Neuroinflamm, 2020, 7(2): e663.
doi: 10.1212/NXI.0000000000000663
|
[7] |
Antony J, Hacking C, Jeffree RL. Pachymeningeal enhancement-a comprehensive review of literature[J]. Neurosurg Rev, 2015, 38(4): 649-659.
doi: 10.1007/s10143-015-0646-y
pmid: 26264063
|
[8] |
D’Antona L, Jaime Merchan MA, Vassiliou A, et al. Clinical presentation, investigation findings, and treatment outcomes of spontaneous intracranial hypotension syndrome: a systematic review and meta-analysis[J]. JAMA Neurol, 2021, 78(3): 329-337.
doi: 10.1001/jamaneurol.2020.4799
pmid: 33393980
|
[9] |
Tian CL, Pu CQ. Dural enhancement detected by magnetic resonance imaging reflecting the underlying causes of cerebral venous sinus thrombosis[J]. Chin Med J (Engl), 2012, 125(8): 1513-1516.
|
[10] |
Fang B, McKeon A, Hinson SR, et al. Autoimmune glial fibrillary acidic protein astrocytopathy: a novel meningoencephalomyelitis[J]. JAMA Neurol, 2016, 73(11): 1297-1307.
doi: 10.1001/jamaneurol.2016.2549
pmid: 27618707
|
[11] |
Britton PN, Dale RC, Blyth CC, et al. Causes and clinical features of childhood encephalitis: a multicenter, prospective cohort study[J]. Clin Infect Dis, 2020, 70(12): 2517-2526.
doi: 10.1093/cid/ciz685
pmid: 31549170
|
[12] |
Bitnun A, Ford-Jones EL, Petric M, et al. Acute childhood encephalitis and Mycoplasma pneumoniae[J]. Clin Infect Dis, 2001, 32(12): 1674-1684.
pmid: 11360206
|
[13] |
Meyer Sauteur PM, Jacobs BC, Spuesens EB, et al. Antibody responses to Mycoplasma pneumoniae: role in pathogenesis and diagnosis of encephalitis?[J]. PLoS Pathog, 2014, 10(6): e1003983.
doi: 10.1371/journal.ppat.1003983
|
[14] |
Lin JJ, Hsia SH, Wu CT, et al. Mycoplasma pneumoniae-related postencephalitic epilepsy in children[J]. Epilepsia, 2011, 52(11): 1979-1985.
doi: 10.1111/epi.2011.52.issue-11
|
[15] |
Lin JJ, Lin KL, Hsia SH, et al. Analysis of status epilepticus with Mycoplasma pneumoniae Encephalitis[J]. Pediatr Neurol, 2010, 43(1): 41-45.
doi: 10.1016/j.pediatrneurol.2010.02.017
|
[16] |
Narita M. Pathogenesis of neurologic manifestations of Mycoplasma pneumoniae Infection[J]. Pediatr Neurol, 2009, 41(3): 159-166.
doi: 10.1016/j.pediatrneurol.2009.04.012
|
[17] |
Meyer Sauteur PM, Moeller A, Relly C, et al. Swiss national prospective surveillance of paediatric Mycoplasma pneumoniae-associated encephalitis[J]. Swiss Med Wkly, 2016, 146: w14222.
|
[18] |
Li Q, Fu N, Han Y, et al. Pediatric autoimmune encephalitis and its relationship with infection[J]. Pediatr Neurol, 2021, 120: 27-32.
doi: 10.1016/j.pediatrneurol.2021.04.001
pmid: 33964702
|
[19] |
Venancio P, Brito MJ, Pereira G, et al. Anti-N-methyl-D-aspartate receptor encephalitis with positive serum antithyroid antibodies, IgM antibodies against Mycoplasma pneumoniae and human herpesvirus 7 PCR in the CSF[J]. Pediatr Infect Dis J, 2014, 33(8): 882-883.
doi: 10.1097/INF.0000000000000408
|
[20] |
Abrantes FF, Moraes MPM, Rezende Filho FM, et al. A clinical approach to hyprtrophic pachymeningitis[J]. Arq Neuropsiquiatr, 2020, 78(12): 797-804.
doi: 10.1590/0004-282x20200073
|
[21] |
Bi Z, Shang K, Cao J, et al. Hypertrophic pachymeningitis in Chinese patients: presentation, radiological findings, and clinical course[J]. Biomed Res Int, 2020, 2020: 2926419.
|
[22] |
Margoni M, Barbareschi M, Rozzanigo U, et al. Idiopathic hypertrophic cranial pachymeningitis as a rare cause of status epilepticus[J]. Neurol Sci. 2019, 40(10): 2193-2195.
doi: 10.1007/s10072-019-03954-9
pmid: 31154557
|
[23] |
De Virgilio A, de Vincentiis M, Inghilleri M, et al. Idiopathic hypertrophic pachymeningitis: an autoimmune IgG4-related disease[J]. Immunol Res, 2017, 65(1): 386-394.
doi: 10.1007/s12026-016-8863-1
pmid: 27592235
|
[24] |
Cação G, Calejo M, Alves JE, et al. Clinical features of hypertrophic pachymeningitis in a center survey[J]. Neurol Sci, 2019, 40(3): 543-551.
doi: 10.1007/s10072-018-3689-3
pmid: 30588552
|
[25] |
Jia H, Xie X, Qi F, et al. Anti-NMDAR encephalitis with simultaneous hypertrophic pachymeningitis in a 68-year-old male: a rare case report[J]. BMC Neurol, 2019, 19(1): 215.
doi: 10.1186/s12883-019-1444-x
pmid: 31472692
|
[26] |
Ueno T, Kon T, Kaneko K, et al. Contrast enhancement of hypertrophic dura mater in MOG antibodyassociated disease[J]. Neurology, 2019, 93(6): 271-272.
doi: 10.1212/WNL.0000000000007909
|
[27] |
Papathanasiou A, Yeo JM, Humberstone M, et al. MOG antibody-associated hypertrophic pachymeningitis[J]. Mult Scler Relat Disord, 2020, 42: 102074.
doi: 10.1016/j.msard.2020.102074
|
[28] |
Zhang TY, Cai MT, Zheng Y, et al. Anti-alpha-amino-3-hydroxy-5-methyl-4-isoxazo lepropionic acid receptor encephalitis: a review[J]. Front Immunol, 2021, 12: 652820.
doi: 10.3389/fimmu.2021.652820
|
[29] |
Diering GH, Huganir RL. The AMPA receptor code of synaptic plasticity[J]. Neuron, 2018, 100(2): 314-329.
doi: S0896-6273(18)30906-1
pmid: 30359599
|
[30] |
Alves de Lima K, Rustenhoven J, Kipnis J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease[J]. Annu Rev Immunol, 2020, 38: 597-620.
doi: 10.1146/annurev-immunol-102319-103410
pmid: 32340575
|
[31] |
Papadopoulos Z, Herz J, Kipnis J. Meningeal lymphatics: from anatomy to central nervous system immune surveil-lance[J]. J Immunol. 2020, 204(2): 286-293.
doi: 10.4049/jimmunol.1900838
pmid: 31907271
|
[32] |
Tan CB, Zhong M, Yao ZX, et al. Anti-GFAP antibody-associated hypertrophic pachymeningitis[J]. Neuropediatrics, 2022, 53(2): 143-145.
doi: 10.1055/s-0042-1742718
pmid: 35148545
|
[33] |
Gong X, Chen C, Liu X, et al. Long-term functional outcomes and relapse of anti-NMDA receptor encephalitis: a cohort study in western China[J]. Neurol Neuroimmunol Neuroinflamm, 2021, 8(2): e958.
doi: 10.1212/NXI.0000000000000958
|
[34] |
Holzer FJ, Rossetti AO, Heritier-Barras AC, et al. Antibody-mediated status epilepticus: a retrospective multicenter survey[J]. Eur Neurol, 2012, 68(5): 310-317.
doi: 10.1159/000341143
pmid: 23051892
|
[35] |
Davies G, Irani SR, Coltart C, et al. Anti-N-methyl-D-aspartate receptor antibodies: a potentially treatable cause of encephalitis in the intensive care unit[J]. Crit Care Med, 2010, 38(2): 679-682.
doi: 10.1097/CCM.0b013e3181cb0968
pmid: 20016378
|
[36] |
Suga H, Yanagida A, Kanazawa N, et al. Status epilepticus suspected autoimmune: neuronal surface antibodies and main clinical features[J]. Epilepsia, 2021, 62(11): 2719-2731.
doi: 10.1111/epi.17055
pmid: 34462918
|