[1] |
Yilmaz M, Kantarjian H, Ravandi F. Acute promyelocytic leukemia current treatment algorithms[J]. Blood Cancer J, 2021, 11(6): 123.
|
[2] |
Burkhardt B, Hermiston ML. Lymphoblastic lymphoma in children and adolescents: review of current challenges and future opportunities[J]. Br J Haematol, 2019, 185(6): 1158-1170.
|
[3] |
Rosolen A, Perkins SL, Pinkerton CR, et al. Revised international pediatric non-Hodgkin lymphoma staging system[J]. J Clin Oncol, 2015, 33(18): 2112-2118.
doi: 10.1200/JCO.2014.59.7203
pmid: 25940716
|
[4] |
中国肿瘤临床学会指南工作委员会. 中国临床肿瘤学会(CSCO)淋巴瘤诊疗指南2021[M]. 北京: 人民卫生出版社, 2021.
|
[5] |
Zanoni L, Bezzi D, Nanni C, et al. PET/CT in non-Hodgkin lymphoma: an update[J]. Semin Nucl Med, 2023, 53(3): 320-351.
|
[6] |
张冉, 李慧慧, 汤爱萍, 等. 急性单核细胞性白血病伴脑淋巴瘤1例[J]. 南昌大学学报(医学版), 2010, 50(8): 122-122.
|
[7] |
翁翔, 黄强, 杨天新, 等. 急性淋巴细胞白血病缓解9年后继发非霍奇金淋巴瘤1例[J]. 肿瘤学杂志, 2015, 21(7): 621-622.
|
[8] |
谢水玲, 林传明, 刘礼平, 等. 急性早幼粒细胞白血病继发弥漫大B细胞淋巴瘤1例[J]. 赣南医学院学报, 2023, 43(4): 395-396.
|
[9] |
Iturrate I, Loscertales J, Fernández-Ruiz E, et al. Angioimmunoblastic T-cell lymphoma after acute myeloid leukemia: alleged common pathogenesis. A case report and literature review[J]. Clin Case Rep, 2020, 8(12): 3494-3497.
|
[10] |
Ding C, Huang Y, Shi M, et al. CD20-negative primary middle ear diffuse large B-cell lymphoma coexpressing MYC and BCL-2 secondary to acute lymphoblastic leukemia: a case report[J]. Medicine (Baltimore), 2019, 98(15): e15204.
|
[11] |
Kawashiri A, Nakagawa SI, Ishiguro C, et al. Donor-derived diffuse large B-cell lymphoma after haploidentical stem cell transplantation for acute myeloid leukemia[J]. J Clin Exp Hematop, 2022, 62(3): 175-180.
doi: 10.3960/jslrt.22014
pmid: 36171097
|
[12] |
Ririe MR, Florell SR, Miles RR, et al. Secondary diffuse large B-cell lymphoma after chemotherapy for acute myeloid leukemia: looking for the unexpected diagnosis[J]. Am J Dermatopathol, 2014, 36(7): e125-e128.
|
[13] |
Zhou KI, Lin C, Neff JL, et al. Dasatinib-associated follicular lymphoma in a patient with B-cell acute lymphoblastic leukaemia[J]. BMJ Case Rep, 2023, 16(5): e252739.
|
[14] |
Higuchi M, Sasaki S, Kawadoko S, et al. Epstein-Barr virus-positive diffuse large B-cell lymphoma following acute myeloid leukemia: a common clonal origin indicated by chromosomal translocation t(3;4)(p25;q21)[J]. Int J Hematol, 2015, 102(4): 482-487.
doi: 10.1007/s12185-015-1802-4
pmid: 25953309
|
[15] |
Eguiguren JM, Ribeiro RC, Pui CH, et al. Secondary non-Hodgkin's lymphoma after treatment for childhood cancer[J]. Leukemia, 1991, 5(10): 908-911.
pmid: 1961025
|
[16] |
Al-Juhaishi T, Khurana A, Shafer D. Therapy-related myeloid neoplasms in lymphoma survivors: reducing risks[J]. Best Pract Res Clin Haematol, 2019, 32(1): 47-53.
doi: S1521-6926(19)30012-X
pmid: 30927975
|
[17] |
Metzgeroth G, Walz C, Score J, et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma[J]. Leukemia, 2007, 21(6): 1183-1188.
doi: 10.1038/sj.leu.2404662
pmid: 17377585
|
[18] |
Chua CC, Fleming S, Wei AH. Clinicopathological aspects of therapy-related acute myeloid leukemia and myelodysplastic syndrome[J]. Best Pract Res Clin Haematol, 2019, 32(1): 3-12.
doi: S1521-6926(19)30005-2
pmid: 30927972
|
[19] |
Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and etiology of leukemia and lymphoma[J]. Cold Spring Harb Perspect Med, 2020, 10(6): a034819.
|
[20] |
Voso MT, Falconi G, Fabiani E. What's new in the pathogenesis and treatment of therapy-related myeloid neoplasms[J]. Blood, 2021, 138(9): 749-757.
doi: 10.1182/blood.2021010764
pmid: 33876223
|
[21] |
Barazzuol L, Coppes RP, van Luijk P. Prevention and treatment of radiotherapy-induced side effects[J]. Mol Oncol, 2020, 14(7): 1538-1554.
doi: 10.1002/1878-0261.12750
pmid: 32521079
|
[22] |
Liu Y, Wang J, Su R, et al. Postoperative radiotherapy-induced leiomyosarcoma in breast cancer: a case report and literature review[J]. Breast Cancer, 2020, 27(4): 780-784.
doi: 10.1007/s12282-020-01050-x
pmid: 31927711
|
[23] |
Rafieemehr H, Maleki Behzad M, Azandeh S, et al. Chemo/radiotherapy-induced bone marrow niche alterations[J]. Cancer Invest, 2021, 39(2): 180-194.
doi: 10.1080/07357907.2020.1855353
pmid: 33225760
|
[24] |
Ballow M, Sánchez-Ramón S, Walter JE. Secondary immune deficiency and primary immune deficiency crossovers: hematological malignancies and autoimmune diseases[J]. Front Immunol, 2022, 13: 928062.
|
[25] |
Zhu S, Wang Y, Tang J, et al. Radiotherapy induced immunogenic cell death by remodeling tumor immune microenvironment[J]. Front Immunol, 2022, 13: 1074477.
|
[26] |
Dymicka-Piekarska V, Koper-Lenkiewicz OM, Zińczuk J, et al. Inflammatory cell-associated tumors. Not only macrophages (TAMs), fibroblasts (TAFs) and neutrophils (TANs) can infiltrate the tumor microenvironment. The unique role of tumor associated platelets (TAPs)[J]. Cancer Immunol Immunother, 2021, 70(6): 1497-1510.
doi: 10.1007/s00262-020-02758-7
pmid: 33146401
|
[27] |
Marcelis L, Tousseyn T, Sagaert X. MALT lymphoma as a model of chronic inflammation-induced gastric tumor development[J]. Curr Top Microbiol Immunol, 2019, 421: 77-106.
doi: 10.1007/978-3-030-15138-6_4
pmid: 31123886
|
[28] |
Dai Y, Shuai X, Kuang P, et al. Philadelphia chromosome with acute myeloid leukemia and concurrent large B cell lymphoma of different origins: a case report[J]. Oncol Lett, 2017, 13(3): 1189-1193.
doi: 10.3892/ol.2017.5578
pmid: 28454232
|
[29] |
Li Z, Zhu YX, Plowright EE, et al. The myeloma-associated oncogene fibroblast growth factor receptor 3 is transforming in hematopoietic cells[J]. Blood, 2001, 97(8): 2413-2419.
doi: 10.1182/blood.v97.8.2413
pmid: 11290605
|
[30] |
Maeda T, Yagasaki F, Ishikawa M, et al. Transforming property of TEL-FGFR3 mediated through PI3-K in a T-cell lymphoma that subsequently progressed to AML[J]. Blood, 2005, 105(5): 2115-2123.
|
[31] |
Pan Y, Meng M, Zheng N, et al. Targeting of multiple senescence-promoting genes and signaling pathways by triptonide induces complete senescence of acute myeloid leukemia cells[J]. Biochem Pharmacol, 2017, 126: 34-50.
doi: S0006-2952(16)30446-4
pmid: 27908660
|
[32] |
Canela A, Martín-Caballero J, Flores JM, et al. Constitutive expression of tert in thymocytes leads to increased incidence and dissemination of T-cell lymphoma in Lck-Tert mice[J]. Mol Cell Biol, 2004, 24(10): 4275-4293.
doi: 10.1128/MCB.24.10.4275-4293.2004
pmid: 15121848
|