[1] |
Klavinskis LS, Liu MA, Lu S. A timely update of global COVID-19 vaccine development[J]. Emerg Microbes Infect, 2020, 9(1):2379-2380.
doi: 10.1080/22221751.2020.1838246
|
[2] |
Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals[J]. Lancet, 2016, 388:3027-3035.
doi: S0140-6736(16)31593-8
pmid: 27839855
|
[3] |
Zhong-Jie Li, Hai-Yang Zhang, Li-Li Ren, et al. Etiological and epidemiological features of acute respiratory infections in China[J]. Nat Commun, 2021, 12(1):5026.
doi: 10.1038/s41467-021-25120-6
pmid: 34408158
|
[4] |
Pneumonia Etiology Research for Child Health(PERCH) Study Group. Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study[J]. Lancet, 2019, 394(10200):757-779.
doi: 10.1016/S0140-6736(19)30721-4
|
[5] |
Baker RE, Park SW, Yang W, et al. The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections[J]. Proc Natl Acad Sci U S A, 2020, 117:30547-30553.
doi: 10.1073/pnas.2013182117
|
[6] |
European Centre for Disease Prevention and Control(ECDC). Influenza virus characterisation, summary Europe, December 2020[EB/OL]. (2022-02-10) https://www.ecdc.europa.eu/sites/default/files/documents/Influenza-characterisation-report-December-2020.pdf.
|
[7] |
Olsen SJ, Azziz-Baumgartner E, Budd AP, et al. Decreased infuenza activity during the COVID-19 pandemic-United States, Australia, Chile, and South Africa, 2020[J]. MMWR Morb Mortal Wkly Rep, 2020, 69:1305-1309.
doi: 10.15585/mmwr.mm6937a6
|
[8] |
Minney-Smith C, Smith D, Stocks N, et al. Where has all the influenza gone? The impact of COVID-19 on the circulation of influenza and other respiratory viruses, Australia, March to September 2020[J]. Euro Surveill, 2020, 25(47):2001847.
|
[9] |
中国疾病预防控制中心, 病毒病预防控制所. 中国流感流行情况概要. 2021年1月11日周报[EB/OL]. (2022-02-10) https://ivdc.chinacdc.cn/cnic/zyzx/lgzb/202101/P020210111510404437185.pdf.
|
[10] |
Zhang RX, Chen DM, Qian Y, et al. Surges of hospital-based rhinovirus infection during the 2020 coronavirus disease-19 (COVID-19) pandemic in Beijing, China[J]. World J Pediatr, 2021, 17(6):590-596.
doi: 10.1007/s12519-021-00477-2
|
[11] |
闫芍药, 原伟莉, 黎巧玲. 2016-2020年西安地区急性呼吸道感染患者病毒病原学特征分析[J]. 华南预防医学, 2021, 47(11):1417-1419.
|
[12] |
花盛浩, 邵雪君, 徐俊. 新型冠状病毒肺炎常态化防控下儿童常见呼吸道病毒感染谱的变化[J]. 中华传染病杂志, 2021, 39(10):621-625.
|
[13] |
European Centre for Disease Prevention and Control(ECDC). Influenza virus characterisation-Summary Europe, December 2021[EB/OL].(2022-02-10) https://www.ecdc.europa.eu/en/publications-data/influenza-virus-characterisation-summary-europe-december-2021.
|
[14] |
中国疾病预防控制中心, 病毒病预防控制所. 中国流感流行情况概要. 12月17日周报[EB/OL]. (2022-02-10) http://ivdc.chinacdc.cn/cnic/zyzx/lgzb/202112/P020211217607106751971.pdf.
|
[15] |
Gastaldi A, Donà D, Barbieri E, et al. COVID-19 lesson for respiratory syncytial virus (RSV): hygiene works[J]. Children (Basel), 2021, 8(12):1144.
|
[16] |
ECDC. Surveillance atlas of infectious diseases[EB/OL]. (2022-02-10) https://atlas.ecdc.europa.eu/public/index.aspx.
|
[17] |
王莉莉, 刘志, 彭虹艳, 等. 新型冠状病毒肺炎疫情暴发前后儿童呼吸道合胞病毒感染流行特征分析[J]. 实用预防医学, 2021, 28(12):1487-1489.
|
[18] |
黄瑶, 张秀玲, 王艳, 等. 2017-2020年扬州地区住院肺炎患者呼吸道病毒监测结果分析[J]. 检验医学, 2021, 36(11):1135-1139.
|
[19] |
Foley DA, Yeoh DK, Minney-Smith CA, et al. The interseasonal resurgence of respiratory syncytial virus in australian children following the reduction of coronavirus disease 2019-related public health measures[J]. Clin Infect Dis, 2021, 73(9):e2829-e2830.
doi: 10.1093/cid/ciaa1906
|
[20] |
Agha R, Avner JR. Delayed seasonal RSV surge observed during the COVID-19 pandemic[J]. Pediatrics, 2021, 148(3):e2021052089.
|
[21] |
Sullivan SG, Carlson S, Cheng AC, et al. Where has all the infuenza gone? The impact of COVID-19 on the circulation of infuenza and other respiratory viruses, Australia, March to September 2020[J]. Euro Surveill, 2020, 25:2001847.
|
[22] |
Takashita E, Kawakami C, Momoki T, et al. Increased risk of rhinovirus infection in children during the coronavirus disease-19 pandemic[J]. Influenza Other Respir Viruses, 2021, 15(4):488-494.
doi: 10.1111/irv.v15.4
|
[23] |
王宇清, 季伟, 陈正荣, 等. 2006-2009年苏州地区儿童急性呼吸道感染人类偏肺病毒感染的流行特点及与气候因素的相关性研究[J]. 中华儿科杂志, 2011, 49(3):214-217.
|
[24] |
Chen Z, Zhu Y, Wang Y, et al. Association of meteorological factors with childhood viral acute respiratory infections in subtropical China: an analysis over 11 years[J]. Arch Virol, 2014, 159(4):631-639.
doi: 10.1007/s00705-013-1863-8
|
[25] |
Wu A, Mihaylova VT, Landry ML, et al. Interference between rhinovirus and infuenza A virus: a clinical data analysis and experimental infection study[J]. Lancet Microbe, 2020, 1:e254-e262.
doi: 10.1016/S2666-5247(20)30114-2
|
[26] |
Casalegno JS, Ottmann M, Duchamp MB, et al. Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France[J]. Clin Microbiol Infect, 2010, 16:326-629.
doi: 10.1111/j.1469-0691.2010.03167.x
|
[27] |
Achten NB, Wu P, Bont L, et al. Interference between respiratory syncytial virus and human rhinovirus infection in infancy[J]. J Infect Dis, 2017, 215:1102-1106.
doi: 10.1093/infdis/jix031
pmid: 28368456
|
[28] |
Agrawal B. Heterologous immunity: role in natural and vaccineinduced resistance to infections[J]. Front Immunol, 2019, 10:2631.
doi: 10.3389/fimmu.2019.02631
pmid: 31781118
|
[29] |
Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses[J]. Annu Rev Immunol, 2014, 32:513-545.
doi: 10.1146/annurev-immunol-032713-120231
pmid: 24555472
|
[30] |
Price OH, Sullivan SG, Sutterby C, et al. Using routine testing data to understand circulation patterns of influenza A, respiratory syncytial virus and other respiratory viruses in Victoria, Australia[J]. Epidemiol Infect, 2019, 147:e221.
doi: 10.1017/S0950268819001055
|
[31] |
Wu X, Cai Y, Huang X, et al. Co-infection with SARS-CoV-2 and influenza A virus in patient with pneumonia, China[J]. Emerg Infect Dis, 2020, 26(6):1324-1326.
doi: 10.3201/eid2606.200299
|
[32] |
Jiang W, Wu M, Zhou J, et al. Etiologic spectrum and occurrence of coinfections in children hospitalized with community-acquired pneumonia[J]. BMC Infectious Diseases, 2017, 17(1):787.
doi: 10.1186/s12879-017-2891-x
|
[33] |
中华人民共和国国家卫生健康委员会. 新型冠状病毒感染的肺炎诊疗方案(第八版)[EB/OL]. (2022-02-10) http://www.nhc.gov.cn/xcs/zhengcwj/202105/6f1e8ec6c4a540d99fafef52fc86d0f8.shtml.
|
[34] |
Thavagnanam S, Christie SN, Doherty GM, et al. Respiratory viral infection in lower airways of asymp-tomatic children[J]. Acta Paediatr, 2010, 99(3):394-398.
doi: 10.1111/apa.2010.99.issue-3
|
[35] |
Lu AZ, Shi P, Wang LB, et al. Diagnostic value of nasopharyngeal aspirates in children with lower respiratory tract infections[J]. Chin Med J (Engl), 2017, 130(6):647-651.
|
[36] |
Tan J, Wu J, Jiang W, et al. Etiology, clinical characteristics and coinfection status of bronchiolitis in Suzhou[J]. BMC Infect Dis, 2021, 21(1):135.
doi: 10.1186/s12879-021-05772-x
|
[37] |
Leung EC, Chow VC, Lee MK, et al. Evaluation of the xpert xpress SARS-CoV-2/Flu/RSV assay for simultaneous detection of SARS-CoV-2, influenza A and B viruses, and respiratory syncytial virus in nasopharyngeal specimens[J]. J Clin Microbiol, 2021, 59(4):e02965-20.
|
[38] |
Chung HY, Jian MJ, Chang CK, et al. Multicenter study evaluating one multiplex RT-PCR assay to detect SARS-CoV-2, influenza A/B, and respiratory syncytia virus using the LabTurbo AIO open platform: epidemiological features, automated sample-to-result, and high-throughput testing[J]. Aging (Albany NY), 2021, 13(23):24931-24942.
|
[39] |
Yun J, Park JH, Kim N, et al. Evaluation of three multiplex real-time reverse transcription PCR assays for simultaneous detection of SARS-CoV-2, influenza A/B, and respiratory syncytial virus in nasopharyngeal swabs[J]. J Korean Med Sci, 2021, 36(48):e328.
doi: 10.3346/jkms.2021.36.e328
|
[40] |
Nörz D, Hoffmann A, Aepfelbacher M, et al. Clinical evaluation of a fully automated, laboratory-developed multiplex RT-PCR assay integrating dual-target SARS-CoV-2 and influenza A/B detection on a high-throughput platform[J]. J Med Microbiol, 2021, 70(2):001295.
|
[41] |
Nabti LZ, Sahli F, Olowo-Okere A, et al. Molecular characterization of clinical carbapenem-resistant enterobacteriaceae isolates from Sétif, Algeria[J]. Microb Drug Resist, 2021: 274-279.
|
[42] |
Marí-Almirall M, Ferrando N, Fernández MJ, et al. Clonal spread and intra- and inter-species plasmid dissemination associated with Klebsiella pneumoniae carbapenemase-producing enterobacterales during a hospital outbreak in Barcelona, Spain[J]. Front Microbiol, 2021, 12:781127.
doi: 10.3389/fmicb.2021.781127
|
[43] |
Khanal M, Joshi PR, Paudel S, et al. Methicillin-resistant coagulase negative staphylococci and their antibiotic susceptibility pattern from healthy dogs and their owners from kathmandu valley[J]. Trop Med Infect Dis, 2021, 6(4):194.
|
[44] |
Zhao F, Lu J, Lu B, et al. A novel strategy for the detection of SARS-CoV-2 Variants based on multiplex PCR-Mass spectrometry minisequencing technology[J]. Microbiol Spectr, 2021, 9(3): e0126721.
|